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Drift-wave turbulence and zonal flow generation

R. Balescu
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Boulevard du Triomphe, 1050 Bruxelles, Belgium
~Received 29 May 2003; published 29 October 2003!

Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the
evolution of the distribution function of wave packets~quasiparticles! characterized by positionx and wave
vectork. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods
of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation
describing coupled diffusion processes inx and k spaces. General forms of the diffusion coefficients are
obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory
approximation, a method recently developed for an accurate measure of the important trapping phenomena of
particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an
illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-
wavelength structures in the poloidal direction that are identified as zonal flows.
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I. QUALITATIVE OVERLOOK

In the quest for controlled nuclear fusion, the main pro
lem is the confinement of plasma by means of a magn
field for a time sufficient for the start of the nuclear reactio
For this reason, an understanding of the particle and en
cross-field transport is crucial for the control of unfavorab
losses. The main mechanism of these losses appears to b
anomalous transport produced by drift-wave turbulence,
to the unavoidable gradients of temperature and pres
present in the confinement devices~such as the tokamak!
@1,2#. For many years, progress has stumbled on the un
standing and control of this loss mechanism.

An important breakthrough was the discovery of the
calledH mode~or high-confinement mode! operation regime
of the tokamak@3#, which led to a substantial improveme
in the confinement time. The explanation of this effect is
formation of atransport barrier at a certain distance from
the center of the magnetic axis. At this barrier, the turbule
level propagating from the core is substantially reduced. A
result, the transport processes are also reduced, leading t
observed increase in the confinement time. Clearly, this
perimental discovery triggered an intense effort in expe
mental, computational, and theoretical plasma physics in
der to understand the possible mechanisms of the trans
to the H mode. An enormous amount of literature has a
peared in the past 20 years: a very clear review, together
an extensive list of references~prior to 2000! will be found
in Ref. @4#. A grouping of more recent results will be foun
in Ref. @5#. The aspects related to theH-mode bifurcation are
covered in the review paper@4#, and more extensively in the
works of Itoh and Itoh and their co-workers@6–8#. We now
outline the general ideas of the production of transport b
riers.

Consider a magnetized plasma~in a constant magnetic
field B! in a state of drift-wave turbulence@4#. The electro-
static potential, as well as related quantities, have a rug
spatial structure which is, moreover, continuously chang
in time. Suppose that in a certain region there exists a
1063-651X/2003/68~4!/046409~13!/$20.00 68 0464
-
ic
.
gy

the
e
re

r-

-

e

e
a
the
x-
i-
r-
on
-
ith

r-

ed
g
s-

tematicshear flowin the direction perpendicular to the mag
netic field and to the gradients~i.e., the poloidal direction in
a tokamak!, which we first assume to be stationary. This flo
will carry alongnonuniformlythe drift-wave structures, thu
deforming them. After some time the structure is torn up a
fragmented into smaller substructures. This means that
various regions of the initial structure lose their correlati
because of the drag by the shear flow. As a result,an overall
decrease of the correlation length is produced in the dire
tion perpendicular to the shear flow.

In a real situation, as encountered in a tokamak~but also
in the terrestrial atmosphere!, the situation is more complex
It will be shown that under certain circumstances, the dr
wave turbulence is able to generate spontaneously a s
flow. The latter is also random, but characterized by a co
lation length that is much longer than that of the origin
drift-wave turbulence. This large-scale turbulent poloid
flow is called azonal flow. Its effect is again, understandabl
a tearing apart of the drift-wave structures and their fragm
tation. This effect is very strikingly seen in the massive
parallel numerical simulations published in Ref.@9#. The
most elaborate explanation of this effect was initiated
Diamond and his collaborators@10,11# ~see also@12#! and is
still being actively pursued~see, e.g.,@5,13–16#!.

In the present paper, we are mainly interested in
mechanism of generation of the zonal flows. The ‘‘classic
discussion of this problem is exposed in Ref.@13# and in Sec.
A.i. of Ref. @5#. Its argument can be summarized as follow
The fragmentation produced by the complex zonal flows
sults in anincreaseof the mean square of the radial wav
vector^kr

2&, which is a measure of the inverse square of
correlation lengthl r

22 in the radial direction~i.e., the direc-
tion of the density gradient!. As a result, the drift-wave fre-
quency vd(k)5kyV* /(11rs

2k2) will decrease. ~Here V*
5rscs /Ln is the electron diamagnetic velocity,rs the elec-
tron Larmor radius,cs the ion-acoustic velocity,Ln the den-
sity gradient length, andky is the component of the wav
vector k in the y direction, mimicking the poloidal compo
©2003 The American Physical Society09-1
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nent ku in a tokamak,k25kr
21ku

2; for simplicity, the tem-
perature is assumed constant.! It follows from the conserva-

tion of the ‘‘action density’’ Ñ(k)5«(k)/vd(k) that the
drift-wave energy«k must also decrease, it being transferr
to the large-scale zonal flow energy. We are thus in the p
ence of an instability that produces an inverse cascadek
space. After its saturation, a new state appears, in which
level of small-scale turbulence, hence the anomalous ra
transport, is significantly reduced: atransport barrier has
been created.

This semiqualitative argument has a weak point, beca

Ñ(k) is not quite the conserved action density, as shown
some of the authors of@5,13# in Ref. @14#. In subsequent
calculations, however, the equation of evolution of the c
rect action density~see below! is used. A diffusion coeffi-
cient ink space is derived from the latter in Refs.@13#, @5# by
using ‘‘the methodology of quasilinear theory.’’ The actio
thus presumably obeys a diffusion equation~which is not
written down!, explaining the growth of̂ kr

2& and the de-
crease of the radial drift-wave transport.

The authors of Refs.@13#, @5# correctly note that this qua
silinear treatment ofk-space diffusion is of limited validity.
When the turbulence level is not very weak, new featu
become important. The rugged fluctuating potential la
scape~as it appears in the numerical simulations of Ref.@9#!
produces transienttrapping of the particle trajectoriesin its
troughs or around its peaks, as well as formation of cohe
structures@17,18#. The difficult nonlinear treatment of thes
processes has been approached in various ways in the r
literature.

In Ref. @14#, the ‘‘wave kinetic equation’’ is treated by
multiple-time perturbation technique which in first approx
mation yields the quasilinear result. In the next approxim
tion, the resulting equation admits localized solutions of
kink-soliton type. Such coherent structures are suppose
be actors in nonlocal transport schemes based on the
lanche concept from self-organized criticality theory@5,15#.
As the avalanches are random events, it appears that t
port in such conditions is intermittent, and the heat flux m
be treated statistically in this framework. Its variance~esti-
mated in@5#! may provide a measure of these fluctuation

Coherent nonlinear structures that are exact solutions
model system of one-dimensional equations for the dr
wave–zonal flow system are very elegantly determined
Ref. @16#. These correspond to wave trapping, which fina
produces solitons, shocks, or other similar localized str
tures. These may be responsible for some of the n
Gaussian features of transport mentioned above.

In the present paper, we take a different approach to
interpretation of the trapping effect on the global transpo
We base our treatment on the decorrelation trajectory~DCT!
method, introduced and developed in several works, star
in 1998 @19–21#, and extended here in order to include t
random walk ink space. The basic idea is to decompose
global ensemble of realizations of the fluctuating poten
into subensembles. Each of the latter comprises the set o
realizations having a fixed initial value of the potential a
of its first two derivatives. A particle~or a wave packet!
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moving in different subensembles has different trajector
because it is trapped in different regions and at differ
times. A deterministic ‘‘decorrelation trajectory’’ is dete
mined as the average trajectory in a given subensemble.
Lagrangian velocity correlations, hence the diffusion coe
cients, are then calculated as weighted superpositions of
lerian velocity correlations in all subensembles, evalua
along these deterministic DCT’s.

The DCT approximation is one significant step beyo
the well-known Corrsin approximation@22#, which includes
the quasilinear and the Bohm approximations. General
pressions of the running diffusion coefficients are derived
the DCT framework; explicit results depend, however, on
statistical definition of the potential, which must be specifi
a priori. As is the case with all theories of strong turbulenc
it is impossible to give a specific validity criterion of th
approximation involved in the DCT method. Its validity ca
only be assessed bya posterioricomparison with experimen
or simulations. It may be stated here that the first applicat
of the method to electrostatic turbulence@19#, i.e., its predic-
tion of the shape of the radial diffusion coefficient curv
agrees quite well with numerical simulations@23#.

The fate of the amplified zonal flows and the final sta
lization of the turbulence is much less understood. Sev
interpretations have been advanced but no final conclu
seems to appear yet. This matter will not be discussed in
present paper.

The paper is organized as follows. In Sec. II, the ex
starting point of the theory is defined, in the form of a Lio
ville equation for the wave action density, i.e., the distrib
tion function of drift-wave packets or ‘‘quasiparticles.’’ In
Sec. III, an application of the methods of nonequilibriu
statistical mechanics leads in full generality to a nondiffus
equation, containing in principle the non-Gaussian effe
mentioned above. A ‘‘local approximation’’ produces
closed non-Markovian advection-diffusion equation for t
ensemble average of the distribution function, i.e., a kine
equation. The latter describes twocoupled diffusive pro-
cesses in position space and in wave-vector space. Ge
expressions for the diffusion tensors are derived in terms
Lagrangian velocity correlation functions. The latter a
evaluated in Sec. IV by applying the decorrelation trajecto
method. Although their numerical evaluation is left for
forthcoming paper, the mechanism of the trapping proces
and the generation of zonal flows are vividly apparent fro
an analysis of individual decorrelation trajectories, p
formed in Sec. V. Section VI contains a comparison w
Refs.@5#, @13#, and conclusions are given in Sec. VII.

II. THE WAVE LIOUVILLE EQUATION

We consider a plasma in the presence of a strong m
netic field ~such as a tokamak!. Locally this magnetic field
can be considered as constant, equal toB. A Cartesian refer-
ence system is then defined by three unit vectors:ez directed
alongB, ex in the direction of the density gradient~the tem-
perature is taken constant, for simplicity!, mimicking the ra-
dial direction in a tokamak, andey5ez3ex , representing the
poloidal direction~shearless slab geometry!. If B is suffi-
9-2
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ciently strong, the collisionless motion of the particles can
approximated by the quasi-two-dimensional motion of th
guiding centers, characterized by their position vectox
5(x,y).

The plasma is assumed to be in a turbulent state produ
by drift waves. In many interesting situations the spectrum
the electrostatic potential fluctuations,f, contains two
widely separated peaks, corresponding, respectively, to lo
range fluctuations and to short-range fluctuations. The fl
tuating potential can thus be represented as a sum of a l
range partf̄ and a short-range partf̃: f5f̄1f̃. These are
most easily identified in Fourier space:

f̄~q,t !5~2p!22E dx eiq•xf̄~x,t !, rsq!1,

f̃~k,t !5~2p!22E dx eik•xf̃~x,t !, rsk!1. ~1!

Whenever such a significant separation exists betw
short and long scales, apartial averageoperation̂ &; can be
introduced, defined as an ensemble average over small-
quantities. Thus, in particular,

f̄5^f&; , ^f̄&;5f̄, ^f̃&;50. ~2!

The small-scale potential fluctuationf̃ never appears iso
lated in the expressions of the macroscopic, observable q
tities; the interesting quantities are quadratic functionals
the potential. Of particular importance is theaction density
N(x,k,t), which is a conserved quantity. Its definition, in th
case of drift waves, is somewhat subtle@14#. Calling
f̂(k,t)5(11rs

2k2)f̃(k,t), the action density is defined as

N~x,k,t !5E dp eip•x^f̂kf̂2k1p&; , rsp!1. ~3!

This quantity obeys an equation of evolution derived
Ref. @14#,

] tN~x,k,t !5
]H~x,k,t !

]x
•

]N~x,k,t !

]k

2
]H~x,k,t !

]k
•

]N~x,k,t !

]x
, ~4!

where

H~x,k,t !5vd~k!1k•V̄~x,t !, ~5!

andV̄5(c/B) (ez3“f̄) is the long-range part of the electr
drift velocity. The remarkable feature here is the Hamilton
structure of the evolution of a set of ‘‘quasiparticles,’’ i.e
wave packets, characterized by the canonically conjug
variables~x,k! @24,25#. The action density plays the role o
the phase-space distribution of the quasiparticles, and o
the Liouville equation~4!, which can be written in terms of a
Liouville operatorLW , defined as in statistical mechanics b
the Poisson bracket ofH andN:
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] tN5LWN[@H,N#. ~6!

Equation~4! is usually called the wave kinetic equation
the literature. From the viewpoint of statistical mechani
this is an inappropriate name~see the next section!. It will
rather be called thewave Liouville equation.

III. THE WAVE KINETIC EQUATION

Given the Hamiltonian structure of Eq.~6!, it is natural to
treat this equation by the methods of nonequilibrium sta
tical mechanics@26# in order to derive a true wave kineti
equation. The procedure is a generalization of the work
Ref. @27#. We note that the action density is the result of
partial averaging over the small-scale fluctuations. It re
mains, however, a fluctuating quantity in the large-scale
main; indeed, the Hamiltonian contains the fluctuating te
k•V̄(x,t). Hence the wave Liouville equation is astochastic
differential equation, i.e., it is of the same nature as ahybrid
kinetic equation@28#. The associated characteristic equatio
are therefore typicalV Langevin equations.

The first step in the treatment of the wave Liouville equ
tion is to separate an average part and a fluctuating part in
distribution function:

N~x,k,t !5n~x,k,t !1dN~x,k,t !,

n~x,k,t !5^N~x,k,t !&, ^dN~x,k,t !&50. ~7!

Note that the average here is over the large-scale pote
fluctuations. We also decompose the wave Liouvillian ope
tor as

LW5LW
0 1dLW , ~8!

where

LW
0 52Vg~k!•

]

]x
, ~9!

dLW52V̄~x,t !•
]

]x
2W̄~x,k,t !•

]

]k
. ~10!

Here Vg(k) is the ~unperturbed! group velocity of the
drift waves,

Vg~k!5
]vd~k!

]k

5
V*

~11rs
2k2!2 $22rs

2kxkyex1@11rs
2~kx

22ky
2!#ey%.

~11!

It represents the velocity of propagation of the wa
packet, or quasiparticle, in the absence of turbulence.
assume it to be independent ofx, i.e., the density gradien
~henceV* ) is treated locally as a constant: In Eq.~10! a
shorthand notation was introduced for the fluctuating ‘‘velo
ity’’ of the wave vector,
9-3
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W̄~x,k,t !52
]

]x
@k•V̄~x,t !#. ~12!

Averaging the wave Liouville equation~4! we obtain
@omitting a term^dLWdN& in Eq. ~14!, which does not con-
tribute to Eq.~13!#

] tn2LW
0 n5^dLWdN&, ~13!

] tdN2LW
0 dN2dLWdN5dLWn. ~14!

On the left-hand side of Eq.~14!, we recognize a linea
term describing free propagation of the drift waves in t
inhomogeneous medium, and a nonlinear term describ
wave-wave interactions. The right-hand side is a source te
providing the coupling to the average equation.

The solution strategy is standard: Eq.~14! is first solved
by the method of characteristics, and the result is substitu
into Eq. ~13! in order to obtain a closed equation for th
average distribution function, i.e., akinetic equation. The
characteristic equations of the wave Liouville equation~14!
must be solved backwards in time@27#,

dx~ tut8!

dt8
5Vg

„k~ tut8!…1V̄„x~ tut8!,t8…, ~15!

dk~ tut8!

dt8
5W̄„x~ tut8!,k~ tut8!,t8…. ~16!

The ‘‘initial’’ condition is

x~ tut !5x, k~ tut !5k. ~17!

The solution of these Langevin equations in a given re
ization is

x~ tut8!5x2E
t8

t

dt1$V
g
„k~ tut1!…1V̄„x~ tut1!,t1…%,

k~ tut8!5k2E
t8

t

dt1W̄„x~ tut1!,k~ tut1!,t1…. ~18!

The solution of the partial differential equation~14! is
then

dN~x,k,t !5E
0

t

dt1dLW„x~ tut1!,k~ tut1!,t1…

3n„x~ tut1!,k~ tut1!,t1…1dN„x~ tu0!,k~ tu0!,0….

~19!

For simplicity we assume that at time zero the fluctuat
is zero:dN(x,k,0)50. Substitution into Eq.~13! yields

] tn~x,k,t !2LW
0 n~x,k,t !

5E
0

t

dt1^dLW@x,k,t#dLW„x~ tut1!,k~ tut1!,t1…

3n„x~ tut1!,k~ tut1!,t1…&. ~20!
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We obtained anon-Markovian, nonlocal equationof the
same type as Eq.~27! of Ref. @27#. Note that, althoughdLW
~10! is a linear combination of]/]x and]/]k, Eq.~20! is not
a diffusion equation. Indeed, the density profile on the righ
hand side is evaluated atx(tut1),k(tut1), which are stochastic
quantities@Eq. ~18!#. Hence, the factorn„x(tut1),k(tut1),t1…

cannot be taken out of the average. This factor could po
bly be expanded into an infinite series of powers
@x(tut1)2x# and of @k(tut1)2k#, which would involve all
partial derivatives ofn(x,k,t) and very complicated aver
ages as coefficients. This shows that Eq.~20! describes, in
general, a nondiffusive process. The non-Gaussian feat
mentioned in Sec. I and in Refs.@5# and@16# are presumably
hidden in this equation, which is an exact consequence of
wave Liouville equation.

In order to proceed further, we assume as in Ref.@27# that
the correlation lengthl' is much smaller than the macro
scopic gradient lengths,Ln , Lnk , both inx and ink. As we
are dealing here with large-scale fluctuations, defined by
condition ^q& rs!1, this implies the assumptionrs!l'

!Ln ,Lnk , which is not unreasonable. This argume
allows us to eliminate the delocalization, and use the follo
ing approximation in the integrand of Eq.~20!:
n„x(tut1),k(tut1),t1…'n@x,k,t1#, i.e., the leading term in the
expansion mentioned above. The equation thus become

] tn~x,k,t !2LW
0 n~x,k,t !

5E
0

t

dt1^dLW@x,k,t#

3dLW„x~ tut1!,k~ tut1!,t1…& n@x,k,t1#. ~21!

This is aclosed, non-Markovian equation of evolution fo
the average distribution function. Using the definition~10!,
this equation is written explicitly as follows:

] tn~x,k,t !1Vg~k!•
]

]x
n~x,k,t !

5E
0

t

dt1H ]

]x
•LIXX~ t2t1!•

]

]x
1

]

]x
•LIXK~ t2t1!•

]

]k

1
]

]k
•LIKX~ t2t1!•

]

]x

1
]

]k
•LIKK~ t2t1!•

]

]kJ n~x,k,t1!. ~22!

This will be called the~true! wave kinetic equation. It is a
non-Markovian ‘‘advection-double-diffusion’’ equation, de-
scribing two coupled diffusion processes, respectively, inx
space and ink space, combined with propagation~advection!
in x space. Equation~22! contains the precise formulation o
what Diamond and his group call the ‘‘random walk ink
space.’’ These authors, however, consider neither the c
pling of this process with the diffusion inx space, nor the
non-Markovian character of these processes.~A similar equa-
tion, in the Markovian limit and without the cross
coefficients, thus describing independent diffusion inx space
9-4
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and ink space, appears in Ref.@15# for the related streame
problem.! The relation between their work and ours will b
discussed at the end of this paper.

Equation~22! introduces four 232 Lagrangian correla-
tion tensors, defined as follows:

Lr us
XX~ t2t1!5^V̄r@x,t#V̄s„x~ tut1!,t1…&, ~23!

Lr us
XK~ t2t1!5^V̄r@x,t#W̄s„x~ tut1!,k~ tut1!,t1…&, ~24!

Lr us
KX~ t2t1!5^W̄r@x,k,t#V̄s„x~ tut1!,t1…&, ~25!

Lr us
KK~ t2t1!5^W̄r@x,k,t#W̄s„x~ tut1!,k~ tut1!,t1…&. ~26!

Assuming stationary turbulence, these functions only
pend on the difference of the two times. If Eq.~22! could be
set in Markovian form, it would introduce four asymptot
diffusion tensors, defined as usual,

Dr us
KK5E

0

`

dt Lr us
KK~ t !, ~27!

with similar definitions for the three other tensors. The M
kovian form is, however, not necessarily justified in gene
@27#.

IV. THE DCT METHOD FOR ZONAL FLOWS

An essential role in the nature of strongly turbulent ph
nomena is played by the trapping processes in the rug
al

ro

on
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potential landscape. It is therefore natural to study these p
nomena by using the idea of thedecorrelation trajectory
~DCT!, developed for ‘‘ordinary’’ drift-wave turbulence in
Ref. @19#. This method requires an extension, which will b
the subject of the present section.

We study the stochastic motion of a drift-wave quasip
ticle in the presence of a fluctuating electrostatic poten
F(x,t) defined as

F~x,t !5«fS x

l
,

t

tc
D , ~28!

where« measures the characteristic amplitude of the pot
tial andf is a dimensionless function of the space and ti
variables. The fluctuations are characterized by a correla
length l and a correlation time tc , such that
^F(0,0)F(x,t)&'0 when uxu@l and/or t@tc . We use the

dimensionless variablesx̄,k̄,u defined as

x5l x̄, k5rs
21k̄, t5tcu. ~29!

For simplicity, we will omit the overbar in the forthcom
ing equations. The Langevin equations of motion of the q
siparticle~15!, ~16! ~in the forward time direction! are
dx~u!

du
5Kdvx

g
„k~u!…2K

]f~x,y,u!

]y U
x5x~u!

[Kdvx
g
„k~u!…1Kvx„x~u!,u…, ~30!

dy~u!

du
5Kdvy

g
„k~u!…1K

]f~x,y,u!

]x U
x5x~u!

[Kdvy
g
„k~u!…1Kvy„x~u!,u…, ~31!

dkx~u!

du
5Kkx~u!

]2f~x,y,u!

]x]y U
x5x~u!

2Kky~u!
]2f~x,y,u!

]x2 U
x5x~u!

[Kwx„x~u!,k~u!,u…, ~32!

dky~u!

du
5Kkx~u!

]2f~x,y,u!

]y2 U
x5x~u!

2Kky~u!
]2f~x,y,u!

]x]y U
x5x~u!

[Kwy„x~u!,k~u!,u…. ~33!
am-

h

These equations will be solved with the following initi
condition:

x~0!50, k~0!5k0. ~34!

~It is important to take an initial wave vector of nonze
length: an initialuk0u50 would remain zero for all times.!
The three scaled velocitiesvg, v, andw are defined by these
equations; they are related to the corresponding dimensi
quantities as follows:
al

Vg5
l

tc
Kdvg, V̄5

l

tc
Kv, W̄5

1

rstc
Kw. ~35!

We introduced here the two basic dimensionless par
eters characterizing the turbulence: theKubo number K, re-
lated to the intensity« of the fluctuations, and thediamag-
netic Kubo number, related to the gradient length throug
V* ,
9-5
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K5
tc

l

c«

Bl
, Kd5

tc

l
V* . ~36!

The components of the dimensionless unperturbed gr
velocity are

vx
g~k!52

2kxky

~11kx
21ky

2!2 , vy
g~k!5

11kx
22ky

2

~11kx
21ky

2!2 .

~37!

It should be noted that Eqs.~30!–~33! derive from the
time-dependent Hamiltonian~5!,

dx

du
5

]H

]k
,

dk

du
52

]H

]x
. ~38!

The transport problem requires the evaluation of the f
Lagrangian correlations~23!–~26!. We concentrate here o
the last one, which introduces all the new features; the th
others are treated in a completely similar fashion. Its co
sponding dimensionless form, for a homogeneous and
tionary turbulent state, is defined as

Lr us
KK~ t !5

1

~rstc!
2 K2Lr us

KK~ t/tc!. ~39!

Using Eq.~26!, we obtain

Lr us
KK~u!5E dx dk^wr~0,k0,0!ws~x,k,u!

3d„x2x~u!…d„k2k~u!…&. ~40!

In order to prepare the way for the DCT method, we fi
note that all fluctuating quantities~including v and w! are
derived from the potentialf. As in all theories based on
Langevin equations, the primary Eulerian potential autoc
relation has to be specifieda priori. This quantity is assumed
to be of the same form as in Ref.@19#,

^f~0,0!f~x,u!&5E~x!T~u!, ~41!

whereE~x! is a dimensionless function of the position, with
maximum at the origin, andT~u! is a similar function of
time. In the explicit calculations of the next section, we u
the following simple forms~Ornstein-Uhlenbeck process!:

E~x!5expS 2
x21y2

2 D , T~u!5e2u, ~42!

but in the remaining part of the present section, these fu
tions can remain unspecified. We introduce the matrixurs ,

urs~x,u!5
]

]xr
vs~x,u!, ~43!

such that@see Eqs.~32!,~33!#

wr~x,k,u!52ksurs~x,u!. ~44!
04640
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We define the notations for the relevant Eulerian corre
tions,

^f~0,0!v j~x,u!&5Efu j~x!T~u!,

^v r~0,0!v j~x,u!&5Er u j~x!T~u!,

^urs~0,0!v j~x,u!&5Ersu j~x!T~u!,

^f~0,0!ujm~x,u!&5Efu jm~x!T~u!,

^v r~0,0!ujm~x,u!&5Er u jm~x!T~u!,

^urs~0,0!ujm~x,u!&5Ersu jm~x!T~u!. ~45!

All these functions can be derived from the primary p
tential correlation as follows:

Efux52
]

]y
E, Efuy5

]

]x
E,

Exux52
]2

]y2 E, Eyuy52
]2

]x2 E,

Exuy5Eyux5
]2

]x]y
E,

Ersu j52
]

]xr
Esu j , Efu jm5

]

]xj
Efum ,

Er u jm5
]

]xj
Er um , Ersu jm5

]

]xj
Ersum , ~46!

We note the following symmetries:

Exuy5Eyux , Efuxx52Efuyy ,

Exxuxx5Eyyuyy52Exxuyy52Eyyuxx52Exyuyx52Eyxuxy ,

Eyyuxy5Exyuyy52Exxuxy52Exyuxx ,

Exxuyx5Eyxuxx52Eyyuyx52Eyxuxx . ~47!

We define some combinations of these Eulerian corre
tions,

Hr5kn
0Ernuf , ~48!

Ar5knEfurn , ~49!

Br us5knEr usn , ~50!

Cr us5kn
0Ernus , ~51!

Ar us5km
0 knErmusn5Asur . ~52!

It is useful to note the following identity:

Ar us5kn

]

]xs
Cr un . ~53!
9-6
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We denote by a superscript 0 the value of a quantity at
origin, thus E..u..

0 5E..u..(x50), Ar
05Ar(x50,k5k0), etc.

Next, we introduce

D05Axux
0 Ayuy

0 2~Axuy
0 !2, ~54!

D05D02Axux
0 ~Ay

0!22Ayuy
0 ~Ax

0!21Axuy
0 Ax

0Ay
0. ~55!

The following combinations appear in the final results:

Fx
05Ayuy

0 Ax
02Axuy

0 Ay
0,

Fy
05Axux

0 Ay
02Axuy

0 Ax
0,

Jx
05@Ayuy

0 2~Ay
0!2#D02Ayuy

0 Axuy
0 Ax

0Ay
0,

Jy
05@Axux

0 2~Ax
0!2#D02Axux

0 Axuy
0 Ax

0Ay
0,

L052Axuy
0 D01Axux

0 Ayuy
0 Ax

0Ay
0. ~56!

We now develop the extension of the DCT method, f
lowing the line of Ref.@19#. The basic step is the decomp
sition of the ensemble of realizations of the turbulent e
semble into subensembles. This decomposition is n
different from the cited one, because not only the potentiaf
and its first derivatives~throughv!, but also its second de
04640
e

-

-
w

rivatives ~throughw! enter the theory. We therefore defin
the subensembleS as the set of realizations in which th
potentialf, the two components of the velocityv r , and the
two components of the ‘‘k velocity’’ wr have a given value a
time 0,

S: f~0,0!5f0, v r~0,0!5v r
0,

2ks
0urs~0,0!5wr

0. ~57!

Let P0(f0,v0,w0) be the probability distribution of thes
initial values, assumed to be Gaussian. Then theKK-
Lagrangian correlation~40! is

Lxx
KK~u!5E df0dv0dw0P0~f0,v0,w0!

3wx
0^wx„x~u!,k~u!,u…&S, ~58!

where^ &S denotes the average in the subensemble. Note
important fact that in the Lagrangian correlation inS,
^wx@0,k0,0# wx„x(u),k(u),u…&S, the first factor can be taken
out of the average because of Eq.~57!, hence the calculation
of this quantity is reduced to the simpler calculation of t
average Lagrangian velocity. The first goal is the calculat
of the distribution functionP0 ,
P0~f0,v0,w0!5^d„f02f~0,0!…d2
„vm

0 2vm~0,0!…d2
„wn

01ks
0uns~0,0!…&

5~2p!25E ds dq dp exp~ isf01 iqmvm
0 1 ipnwn

0!

3exp$2 1
2 @s2E01qrqsEr us

0 1pnpmkr
0ks

0Enrums
0 12sqrEfur

0 22spnkr
0Efunr

0 22qrpnks
0Er uns

0 #%. ~59!

Note thatE051, Er us
0 5d rs , Efur

0 5Er uns
0 50. The remaining integrations are elementary, though somewhat tedious:

P0~f0,v0,w0!5
1

A~2p!5D0
expH 2

1

2 FD0

D0 ~f0!21~vx
0!21~vy

0!21
Jx

0

D0D0 ~wx
0!21

Jy
0

D0D0 ~wy
0!21

2L0

D0D0 wx
0wy

0

1
2Fx

0

D0 f0wx
01

2Fy
0

D0 f0wy
0G J . ~60!

The average velocities in the subensemble are obtained by an extension of the method described in Ref.@19#:

^vn~x,u!&S5
^vn~x,u!d„f02f~0,0!…d2

„vm
0 2vm~0,0!…d2

„wr
01ks

0urs~0,0!…&
P0~f0,v0,w0!

[vn
S~x!T~u!. ~61!

A lengthy, but elementary calculation yields

vn
S~x!5

1

D0 ~D0Efun2Fx
0Cxun2Fy

0Cyun!f01Exunvx
01Eyunvy

01
1

D0D0 ~D0Fx
0Efun2Jx

0Cxun2L0Cyun!wx
0

1
1

D0D0 ~D0Fy
0Efun2L0Cxun2Jy

0Cyun!wy
0. ~62!

The averagek velocity in the subensemble is obtained in the same way,

^wn~x,k,u!&S5wn
S~x,k!T~u!, ~63!
9-7
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with

wn
S~x,k!5

1

D0 ~2D0An1Fx
0Axun1Fy

0Ayun!f02Bxunvx
02Byunvy

01
1

D0D0 ~2D0Fx
0An1Jx

0Axun1L0Ayun!wx
0

1
1

D0D0 ~2D0Fy
0An1L0Axun1Jy

0Ayun!wy
0. ~64!

A strong test of these expressions isvn
S(0)5vn

0, wn
S(0,k0)5wn

0.
We may also calculate the average potential in the subensemble,

^f~x,u!&S5fS~x,k!T~u!5F 1

D0 ~D0E2Fx
0Hx2Fy

0Hy!f01Exufvx
01Eyufvy

01
1

D0D0 ~D0Fx
0E2Jx

0Hx2L0Hy!wx
0

1
1

D0D0 ~D0Fy
0E2L0Hx2Jy

0Hy!wy
0GT~u!. ~65!
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The remaining treatment closely follows Ref.@19#. We
define in a given subensembleS a deterministic decorrela-
tion trajectoryby the equations of motion,

dxS~u!

du
5Kdvg

„kS~u!…1KvS
„xS~u!…T~u!,

dkS~u!

du
5KwS

„xS~u!,kS~u!…T~u!,

xS~0!50, kS~0!5k0. ~66!

These equations determine the motion of a fictitious q
siparticle along the deterministic DCT. We note that t
Hamiltonian structure of the starting equations~38! is inher-
ited by the DCT equations. Indeed, defining an aver
Hamiltonian in the subensemble,

HS~xS,kS,u!5Kdvd~kS!1KkS
•vS~xS!T~u!, ~67!

it is easily checked that Eqs.~66! can be written as

dxS

du
5

]HS

]kS ,
dkS

du
52

]HS

]xS . ~68!

It follows from this structure that, in the stationary ca
@T(u)51#, the Hamiltonian is a constant of the motio
along the DCT,

HS
„xS~u!,kS~u!…5HS

„0,k0
…. ~69!

The deterministic DCT is now introduced in the expre
sions of the four Lagrangian correlation functions~23!–~26!
@see Eq.~58!#. These quantities, evaluated in thedecorrela-
tion trajectory approximation, are

Lj un
XX~u!5E df0dv0dw0P0~f0,v0,w0!v j

0vn
S
„xS~u!,u…T~u!,
04640
-

e

-

Lj un
XK~u!5E df0dv0dw0P0~f0,v0,w0!

3v j
0wn

S
„xS~u!,kS~u!,u…T~u!,

Lj un
KX~u!5E df0dv0dw0P0~f0,v0,w0!

3wj
0vn

S
„xS~u!,u…T~u!,

Lj un
KK~u!5E df0dv0dw0P0~f0,v0,w0!

3wj
0wn

S
„xS~u!,kS~u!,u…T~u!. ~70!

We stress again the great advantage of the DCT appr
mation: the calculation of the Lagrangian correlations is
placed by the simpler problem of the calculation of an Eu
rian average, evaluated along the deterministic decorrela
trajectory. The present problem is, however, significan
more complicated in the present case than for the sim
drift-wave turbulence treated in Ref.@19#. The complication
comes from the intimate coupling of the equations forxS(u)
andkS(u). Any attempt to treat separately one or the oth
variable would be a gross oversimplification. The Lagrang
correlations are now fivefold integrals, which makes th
evaluation more difficult. The final result depends on mo
parameters, viz., the Kubo numberK, the diamagnetic Kubo
numberKd , but also the initial wave vectork0. The numeri-
cal calculation of the Lagrangian correlations and of the d
fusion coefficients will be the object of a forthcoming wor
Some important qualitative features can, however, be
tained from an analysis of the individual DCT trajectories

V. THE DECORRELATION TRAJECTORIES

We now consider the result of the numerical integration
the decorrelation trajectories~66!. For definiteness, we as
sume the form~41!,~42! for the Eulerian potential autocorre
lation. A specified trajectory depends on the five parame
9-8
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DRIFT-WAVE TURBULENCE AND ZONAL FLOW GENERATION PHYSICAL REVIEW E68, 046409 ~2003!
defining the subensembleS (f0,v0,w0) and on the initial
value of the wave vectork0, as well as on the two dimen
sionless Kubo numbersK andKd . For the purpose of illus-
tration, we choose the case of a subensemble with a r
tively high value of f052. Although the weight of the
corresponding trajectories is rather small in the expressio
the correlation functions@because of the factorP0 in Eqs.
~70!#, the qualitative features of the DCT are more clea
exhibited in this extreme case. We thus define the sub
sembleS by the following values of the parameters:f052,
vx

05vy
050, wx

05wy
051. We also choose the fixed valueKd

51. The choicev050 implies that the~fictitious! quasipar-
ticle starts at time zero with the initial group veloci
Kdvg(k0) and ends after a sufficiently long time (u@u tr),
whenvn

S50, wn
S50, with the final group velocityKdvg(kas).

Note that, because of the factorization prope
^v(0,0)v(x,u)&S5v0^v(x,u)&S ~and similarly forw! @see Eq.
~58!#, the vanishing ofvS,wS implies the vanishing of the
Lagrangian velocity correlation in the subensembleS. Thus
the trapping timeu tr is the time after which the fictitious
quasiparticle is no longer correlated along its trajectory w
its initial value. The trapping timeu tr is determined numeri-
cally from the shape of the trajectories~see below!. It should
be clear thatu tr relates to a single DCT.„Note that a charac
teristic time related to trapping is defined in Ref.@29# as
ub

215vb5@q2v(q) kuudvg(k)/dkr u#1/2; this is the bounce
frequency of a drift plasmon trapped by zonal flow inkr
space. It is not clear that this is the same as ouru tr defined
above.… The initial wave vector is chosen askx

051, ky
050. As

a result, the~unperturbed! group velocity at the initial time is
vg(k0)5(1/2) ey . Thus, in the absence of turbulence (K
50), the fictitious quasiparticle moves in a straight line
they direction, with a group velocity that is constant becau
the wave vectork remains constant.

We now consider a rather small value of the Kubo nu
ber, K50.5. Figure 1 shows the corresponding DCT traje
tories, and Fig. 2 shows the positionxS(u) and the wave
vectorkS(u) as functions of time. In Fig. 3, the correspon
ing graphs of the velocitiesvS(u) in x space@together with
the group velocityvg(u)] and wS(u) in k space are shown

Even in this relatively weak turbulence, the picture d
parts radically from the unperturbed motion. The beginn
of a trapping process inx spaceis evident: the~fictitious!
quasiparticle starts with the initial group velocityvg(k0), but
the turbulent velocity quickly overcomes the latter and d
flects the particle from its rectilinear motion. The turbule

FIG. 1. Decorrelation trajectories (yS-xS) and (ky
S-kx

S) for
K50.5. Subensemble parameters:f052, vx

05vy
050, wx

05wy
051.

Kd51. Initial wave vector:kx
051, ky

050.
04640
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component of the velocityvS vanishes after a time that wil
be called thetrapping timeu tr , of order of the correlation
time; in the present case its value is seen to beu tr'3, after
which the quasiparticle moves again uniformly, with th
group velocity. Meanwhile, the group velocity has chang
because the wave vector has changed. Thus the quasipa
is deflected from its unperturbed motion in they direction
and moves now in an oblique direction. We thus witness h
a refraction phenomenondue to the passage through the tu
bulent medium. This refraction effect is also found~in a dif-
ferent context! in Refs.@15# and @16#.

The wave vector starts fromk0 and initially increases in
both directions, the growth being largest in thex ~‘‘radial’’ !
direction. Note that the increase ofkx

S is monotonous, until it
reaches a saturation value afteru'u tr . The y ~‘‘poloidal’’ !
componentky

S quickly reaches a maximum: its monotono
growth is then stopped and reversed after a certain timeu
'1). It then changes sign, and finally (u'u tr) it reaches a
negative saturation value. This is the manifestation of
trapping process ink space, which only affects~in the
present situation! the y component. This process ends aft
u'u tr , after which kS remains constant:kS(u)→k` @and
wS(u)→0]. It is important to note that~in the present case!
uky

`u,kx
` (kx

`51.54,ky
`520.047). As a result, in the

asymptotic state (u.u tr), the average length scale of th
turbulence in the radial direction is much smaller than in
poloidal direction. This obviously explains the fragmentati

FIG. 2. DCT trajectories: positionxS(u) and wave vectorkS(u)
as functions of time, forK50.5.

FIG. 3. Complete DCT velocitiesVS(u)5vg
„k(u)…1KvS(u) in

x space andwS(u) in k space, as functions of time, forK50.5. The
dashed lines represent the group velocityvg@kS(u)#.
9-9
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R. BALESCU PHYSICAL REVIEW E 68, 046409 ~2003!
process described qualitatively in the first section, and
plies thegeneration of a~small-ky) zonal flow.

To sum up: during the trapping timeu tr , the wave vector
changes from its initial value to a constant asymptotic va
with uky

`u,ukx
`u; the quasiparticle is trapped during that tim

and ends up moving with a new, deflected group veloc
~refraction!. In the final state, the length scale of the turb
lence in they ~poloidal! direction is much greater than in th
x ~radial! direction.

This analysis shows that the decorrelation process is
richer than in the case studied in Ref.@19#. In particular, the
position and the wave vector move in a strictly coupled w
and cannot be considered separately from each other. T
is weak trapping inx space, but the trapping of theky wave-
vector component is already quite significant at this re
tively modest value of the Kubo number (K50.5).

We now consider a situation of strong turbulence,K
510, with the same subensemble parameters. The DCT
sition and the wave vector of the fictitious quasiparticle
shown in Figs. 4 and 5, and the corresponding velocities
shown in Fig. 6.

The features which were merely sketched in the casK
50.5 are now greatly enhanced. The~fictitious! quasiparticle
is clearlystrongly trapped inx space: its motion is a ‘‘broken
oscillation’’ during the timeu tr ~which has barely changed
u tr'3). During the trapping time it is more and mo
strongly deflected. Its trajectory makes two turns, thus c
fining the quasiparticle to a finite region of space. But af
u tr , the turbulent component of the velocity vanishes, a
the fictitious quasiparticle moves away with the final gro
velocity @vx

g(k`)520.232,vy
g(k`)50.115#. Meanwhile,

both thekx
S and theky

S components of the wave vector un
dergo a broken oscillation which stops atu'u tr , when they
reach the valueskx

`50.879, ky
`50.965. We thus witness

FIG. 4. Decorrelation trajectories (yS-xS) and (ky
S-kx

S) for
K510. Subensemble parameters:f052, vx

05vy
050, wx

05wy
051.

Kd51. Initial wave vector:kx
051, ky

050.

FIG. 5. DCT trajectories: positionxS(u) and wave vectorkS(u)
as functions of time, forK510.
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strong trapping in bothk directions. In the present situation
we can no longer speak of zonal flow generation:ky

` is now
of order 1, and moreover it surpasseskx

` in absolute value.
The strong turbulence produces in this case a fragmenta
both in the radial and in the poloidal directions.

In order to obtain a more global insight, we plotted in F
7 the asymptotic wave-vector components (kx

` ,ky
`) against

the Kubo numberK for given subensemble parameters~in
particular,f051.5). It clearly appears that true zonal flo
generation is possible only in a limited range of Kubo nu
bers. In the present subensemble, the two criteriauky

`u
,ukx

`u, uky
`u,1 are satisfied in the range 0,K&1.5. Beyond

this range,ky
` performs an oscillation~in K! and finally

settles at an absolute value larger than 1.kx
` has a similar

behavior, but is shifted with respect to the former. This sh
explains the smallness of the ratiouky

`u/ukx
`u for small K

~zonal flow generation!.
Clearly, the present discussion refers to a single sub

semble; a more complete scanning of the parameter spa
necessary for a firm general conclusion. We have conside

FIG. 6. Complete DCT velocitiesVS(u) andwS(u) as functions
of time, for K510. The dashed lines represent the group veloc
vg
„kS(u)….

FIG. 7. Asymptotic poloidal and radial components of the wa
vector, ky

` , kx
` vs Kubo numberK. Subensemble parameters:f0

51.5, vx
05vy

050, wx
05wy

051. Kd51. Initial wave vector:kx
051,

ky
050.
9-10
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DRIFT-WAVE TURBULENCE AND ZONAL FLOW GENERATION PHYSICAL REVIEW E68, 046409 ~2003!
other values off0 and found very similar behavior. Th
corresponding curves are dilated~for smaller f0) or con-
tracted~for largerf0) in the K direction.

In conclusion, it clearly appears that the trapping of t
quasiparticles~i.e., of the drift wave packets! plays a major
role in their dynamics, even at relatively small levels of tu
bulence~e.g.,K50.5). Thus, the quasilinear approximatio
is hardly valid. The trapping process will have a strong
fluence on the diffusion coefficients. Their quasilinear a
proximation certainly gives an overestimated value.

VI. THE DIAMOND MODEL

As stated in the Introduction, Diamond and co-worke
@13,15# were the first authors who introduced the idea o
‘‘random walk in k space’’ for explaining the generation o
transport barriers. We now analyze the nature of their mo
and study it in light of the DCT method.

A. The Diamond D-2 model

A first approximation in Ref.@5# is the neglect of the
turbulence in the motion of the quasiparticles, i.e., in the
equations forx(u),y(u). Indeed, the only trace of the pa
ticle motion in @5# is the appearance of the~deterministic!
group velocityVg in the quasilinear propagator defining th
diffusion coefficient ink space. The resulting equations f
the DCT in this ‘‘Diamond-2 model’’~which is different
from the original Diamond model! are then Eqs.~66!, in
which the termKvS@xS(u)#T(u) is omitted.

The DCT trajectories of this model were compared w
the ones of the ‘‘complete’’ model~66!. For brevity, we shall
not, however, illustrate the results in detail. Let us just m
tion that for weak turbulence~e.g.,K50.5) the trajectory of
k(u) is not very different from that of the complete mode
except that it stops at a rather different asymptotic value
a result, the final motion inx space is incorrectly predicted
For strong turbulence the discrepancy is much worse.

B. The Diamond D-1 model

We discuss in some more detail a comparison with
final model used in Ref.@5#. In that paper a further simpli
fying approximation is made, by assuming thatthe potential
depends only on the x coordinate: f(x,t). This could be
called a ‘‘pseudo-one-dimensional model,’’ denoted byD-1.
It is not truly one-dimensional because, as will be seen
low, the motion inx space is two-dimensional, although th
motion in k space is indeed one-dimensional.

In order to compare theD-1 model to the complete DCT
approximation, the latter has to be reconsidered from
beginning, because many quantities vanish for a o
dimensional potential. The starting Langevin equations~30!–
~33! now reduce to

dx~u!

du
5Kdvx

g
„kx~u!,ky

0
…,
04640
e

-

-
-

s

el

-

s

e

e-

e
e-

dy~u!

du
5Kdvy

g
„kx~u!,ky

0
…1K

]f@x,u#

]x U
x5x~u!

[Kdvy
g
„kx~u!,ky

0
…1Kvy„x~u!,u…,

dkx~u!

du
52Kky

0]2f@x,u#

]x2 U
x5x~u!

[Kwx„x~u!,ky
0,u…,

dky~u!

du
50. ~71!

The componentky of the wave vector thus remains con
stant. It should, however, not be put equal to zero, otherw
the kx component would also remain constant, and th
would be no ‘‘random walk ink space.’’ The variablekx
component appears only in the group velocity. The th
nontrivial equations remain coupled. The only turbulent v
locity components that remain in this case arevy and ux .
TheD-1 model assumes thatKvy„x(u),u… can be neglected

We now note that for this ‘‘one-dimensional potentia
many Eulerian correlations vanish; the only nonzero ones
Efuy , Efuxy , Eyuy , Eyuxy , Exyuy , andExyuxy . The subensemble
S is now defined by the constraints

S: f~0,0!5f0, vy~0,0!5vy
0, 2ky

0uxy~0,0!5wx
0.
~72!

The calculations of the various DCT quantities must
redone along the same lines as in Eqs.~59!–~65!. Thus, the
probability distribution of the initial values is

P0~f0,vy
0,wx

0!

5^d„f02f~0,0!…d„vy
02vy~0,0!…d„wx

01ky
0uxy~0,0!…&

5
1

@~2p!3G0#1/2expH 2
1

2 FAxux
0

G0 ~f0!21~vy
0!2

1
1

G0 ~wx
0!21

Ax
0

G0 f0wx
0G J , ~73!

where

G05Axux
0 2~Ax

0!2. ~74!

The average quantities in the subensemble are

vy
S~x,ky

0!5
1

G0 ~Axux
0 Efuy2Ax

0Cxuy!f01Eyuyvy
0

1
1

G0 ~Ax
0Efuy2Cxuy!wx

0, ~75!
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wx
S~x,ky

0!5
1

G0 ~2Axux
0 Ax1Ax

0Axux!f
02Byuxvy

0

1
1

G0 ~2Ax
0Ax1Axux!wx

0 . ~76!

The equations of motion for the DCT are

dxS~u!

du
5Kdvx

g
„kx

S~u!,ky
0
…,

dyS~u!

du
5Kdvy

g
„kx

S~u!,Ky
0
…1Kvy

S
„xS~u!,ky

0
…T~u!,

dkx
S~u!

du
5Kwx

S
„xS~u!,ky

0
…T~u!,

dky
S~u!

du
50,

xS~0!5yS~0!50, kx
S~0!5kx

0, ky
S~0!5ky

0. ~77!

These equations define the ‘‘complete’’ pseudo-o
dimensional DCT. The DiamondD-1 model is obtained by
setting vy

S
„xS(u),ky

0
…50 in the second equation~77!. The

peculiar structure of the one-dimensional model has an in
esting consequence. The equations forxS(u) and for kx

S(u)
form a closed set. Upon substituting their solution into t
equation foryS(u), the latter is found by a mere quadratur
The same remark holds for the original Langevin equati
~71!. As a result, if one is only interested in the evolution
the wave vector~as in Ref.@5#!, the neglect of the turbulenc
in dyS/dt has no consequence: the wave vectorkx

S(u), and
also xS(u), obtained in the complete pseudo-on
dimensional model or in theD-1 model are the same. But, o
course, the two-dimensional spatial DCTxS(u) will be dif-
ferent in the two models. This is shown in Figs. 8 and 9.

We first note that the wave vectorkx
S(u) increases sharply

and monotonously during a timeu'4, after which it satu-
rates at a constant asymptotic value. This means thatthere is
no trappingin k in this model. As for theyS-xS DCT orbits,
they are different in the two models, as expected. The tr
sient effect of the turbulence is just a shift, followed by

FIG. 8. DCT wave vectorkx
S(u) as a function of time, for two

values ofK, for both the complete pseudo-one-dimensional mo
and theD-1 model. The two curves are exactly superposed. Sub
semble parameters:f052, vy

050, wx
051. Kd51. Initial wave vec-

tor: kx
051, ky

050.1.
04640
-

r-

e
.
s

-

n-

regular motion~with velocity vg). In particular,no trapping
effect appears in these models, even at relatively high le
of turbulence, where the two-dimensional DCT’s show
strong trapping effect~see Figs. 2 and 5!. Note that even the
‘‘Diamond D-2 model’’ exhibits trapping. Thus, in the one
dimensional models a very important feature of the turb
lence is lost.

Next, we note that the one-dimensional models do
scribe the radial fragmentation process of the drift-wa
structures by the increase ofkx

S(u), but they do notgenerate
a zonal flow. Indeed,ky(u) remains constant in these mode
@see Eqs.~71!, ~77!#. The poloidal zonal flow is prescribe
externally in the models withf(x,u) independent ofy. It
thus appears that a two-dimensional model is indispens
for covering the full physics of the process.

VII. CONCLUSIONS

In the present work we treated in detail the process ca
‘‘ random walk in wave-vector space’’ by Diamond and co-
workers@13,5#. This leads to an alternative view of the fo
mation of transport barriers in a turbulent plasma. Rat
than basing the study on a dispersion relation and the rel
modulational instability@30#, we consider a picture based o
the evolution of a set of drift-wave packets~‘‘quasiparti-
cles’’!. The formation of zonal flows appears as a result
the fragmentation of the wave packets in the radial direct
and the generation of long-wavelength structures in the
loidal direction.

The evolution of the distribution function of these packe
is described by a well-known Liouville equation, derivin
from a Hamiltonian. Assuming that the system is in a turb
lent state, an application of the standard methods of none
librium statistical mechanics@26,27# leads, in general, to a
nondiffusive equation, responsible for non-Gaussian beh
ior. If the spatial delocalization is neglected, a true wa
kinetic equation, i.e., a closed equation for the ensem
averaged part of the distribution function, is obtained. T
new feature here is the form of this non-Markovia
advection-diffusion equation: it describes the strong
coupled diffusive processes inx space and ink space. Gen-
eral expressions of the four diffusion tensors are derived
terms of Lagrangian correlation functions of the~x and k!
velocities.

The evaluation of such Lagrangian correlations is a w
known stumbling block in turbulence theories. We show

l
n-

FIG. 9. DCT orbits in thexS-yS plane for two values ofK. Solid
line, complete one-dimensional model; dashed line,D-1 model.
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that the quasilinear approximation is very much limited
very weak turbulence, because it neglects the important t
ping effect. The latter appears to be quite important in botx
andk spaces. In order to take account of this effect, we u
the decorrelation trajectory approximation, which was
cently developed precisely for this purpose. Its general
tion to the present problem produces analytical express
for the Lagrangian correlations and the diffusion coefficien
The numerical evaluation of these coefficients is, howe
postponed to a forthcoming paper.

The analysis of typical individual decorrelation traject
ries in a given subensemble~and for a given form of the
Eulerian potential autocorrelation! provides us with a vivid
illustration of the trapping processes. In particular, it expla
the radial fragmentation of the wave packets, as well as
zi-
v,

a

e,

en
on

J.

v.

04640
p-

d
-
-

ns
.
r,

s
e

generation of long-wavelength zonal flows. The latter
however, only produced in a limited range of Kubo numbe
whose extension depends on the subensemble paramete
comparison has been made with previously used models
course, the picture is not yet complete. These effects mus
averaged over all subensembles, i.e., over all initial con
tions of the potential and of the velocities, in the calculati
of the observable diffusion coefficients. As stated above,
will be the subject of a forthcoming work.
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