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Drift-wave turbulence and zonal flow generation
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Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the
evolution of the distribution function of wave packetpuasiparticlescharacterized by positior and wave
vectork. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods
of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation
describing coupled diffusion processesxnand k spaces. General forms of the diffusion coefficients are
obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory
approximation, a method recently developed for an accurate measure of the important trapping phenomena of
particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an
illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-
wavelength structures in the poloidal direction that are identified as zonal flows.

DOI: 10.1103/PhysReVvE.68.046409 PACS nuner52.35.Ra, 52.25.Gj, 52.35.Mw, 52.35.Kt

I. QUALITATIVE OVERLOOK tematicshear flowin the direction perpendicular to the mag-
netic field and to the gradientse., the poloidal direction in

In the quest for controlled nuclear fusion, the main prob-a tokamal, which we first assume to be stationary. This flow
lem is the confinement of plasma by means of a magnetiwill carry alongnonuniformlythe drift-wave structures, thus
field for a time sufficient for the start of the nuclear reactions.deforming them. After some time the structure is torn up and
For this reason, an understanding of the particle and energyagmented into smaller substructures. This means that the
cross-field transport is crucial for the control of unfavorablevarious regions of the initial structure lose their correlation
losses. The main mechanism of these losses appears to be figause of the drag by the shear flow. As a resmltpverall

anomalous transport produced by drift-wave turbulence, duglecrease of the correlation length is produced in the direc-
to the unavoidable gradients of temperature and pressuffon perpendicular to the shear flow

present in the confinement devicésuch as the tokamak In a real situation, as encountered in a tokarftalkt also
[1,2]. For many years, progress has stumbled on the undejn the terrestrial atmospherehe situation is more complex.
standing and control of this loss mechanism. It will be shown that under certain circumstances, the drift-

l’ﬁ” important br:_ear:kthrofggh was the discovery of the soyyaye turbulence is able to generate spontaneously a shear
calledH mode(or high-confinement modeperation regime ., The [atter is also random, but characterized by a corre-

of the tokamaK 3], which led to a substantial improvement lation length that is much longer than that of the original

in the ponflnement time. The. explanation .Of th|s effect is thedrift-wave turbulence. This large-scale turbulent poloidal
formation of atransport barrierat a certain distance from

the center of the magnetic axis. At this barrier, the turbulencé\IOW IS called azonal rovy Its effect is again, unders.tandably,
level propagating from the core is substantially reduced. As Y tgarlng "?‘pa” of the drlft-wav.e. structures gnd their fragmen-
result, the transport processes are also reduced, leading to fation. This effgct IS very ;tnkmgly Seen in the massively
observed increase in the confinement time. Clearly, this exP@rallel numerical simulations published in R¢8]. The
perimental discovery triggered an intense effort in experi-m_OSt elaborate_ explanation of this effect was |n|t|ate_d by
mental, computational, and theoretical plasma physics in or?i@mond and his collaboratof40,11 (see alsd12]) and is

der to understand the possible mechanisms of the transitiotfill P€ing actively pursuedsee, e.g.[5,13-18). _

to the H mode. An enormous amount of literature has ap- N the present paper, we are mainly interested in the

peared in the past 20 years: a very clear review, together witfrechanism of generation of the zonal flows. The “classical”
an extensive list of referencéprior to 2000 will be found ~ discussion of this problem is exposed in Réf3] and in Sec.

in Ref. [4]. A grouping of more recent results will be found A.i. of Ref. [5]. Its argument can be summarized as follows.
in Ref.[5]. The aspects related to themode bifurcation are  1he fragmentation produced by the complex zonal flows re-
covered in the review papg4], and more extensively in the sults in anlncr(_aasgof the mean square of the radial wave

works of Itoh and Itoh and their co-workef§—8]. We now vector(k?), which is a measure of the inverse square of the
outline the general ideas of the production of transport barcorrelation length % in the radial directiorfi.e., the direc-

riers. tion of the density gradientAs a result, the drift-wave fre-
Consider a magnetized plasniim a constant magnetic quency wy(k) =K,V /(1+ p2k?) will decrease (Here V,
field B) in a state of drift-wave turbulend@]. The electro- =pC./L, is the electron diamagnetic velocity, the elec-

static potential, as well as related quantities, have a ruggetlon Larmor radius¢g the ion-acoustic velocityl.,, the den-
spatial structure which is, moreover, continuously changingity gradient length, andt, is the component of the wave
in time. Suppose that in a certain region there exists a systectork in the y direction, mimicking the poloidal compo-
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nentk, in a tokamakk?=k2+k3; for simplicity, the tem- moving in different subensembles has different trajectories
perature is assumed constauit.follows from the conserva- because it is trapped in different regions and at different
tion of the *action density” N(k)=e(k)/wy(k) that the times. A deterministic “decorrelation trajectory” is deter-
drift-wave energy, must also decrease, it being transferredmmed as the average trajec.tory Inagiven supensemble. The
to the large-scale zonal flow energy. We are thus in the pres-29"angian velocity correlations, hence the diffusion coeffi-
' cients, are then calculated as weighted superpositions of Eu-

ence Ol?tn |ntstab|:|ty tthat produce?[ ::,[m Inverse Cascidﬁbh":hlerian velocity correlations in all subensembles, evaluated
space. After its saturation, a new state appears, in whic i%long these deterministic DCT’s.

level of small-scale turbulence, hence the anomalous radia The DCT approximation is one significant step beyond

transport, is significantly reduced: teansport barrierhas o \well-known Corrsin approximatiof22], which includes
been created. . the quasilinear and the Bohm approximations. General ex-
_ This semiqualitative argument has a weak point, becausressions of the running diffusion coefficients are derived in
N(k) is not quite the conserved action density, as shown byhe DCT framework; explicit results depend, however, on the
some of the authors df,13] in Ref. [14]. In subsequent statistical definition of the potential, which must be specified
calculations, however, the equation of evolution of the cor-a priori. As is the case with all theories of strong turbulence,
rect action densitysee below is used. A diffusion coeffi- it is impossible to give a specific validity criterion of the
cient ink space is derived from the latter in Reff$3], [5] by ~ @pproximation involved in the DCT method. Its validity can
using “the methodology of quasilinear theory.” The action Only be assessed layposterioricomparison with experiment
thus presumably obeys a diffusion equatiovhich is not  OF Simulations. It may be stated here that the first application

written down), explaining the growth 0(er> and the de- ©f the method to electrostatic turbuler{d®], i.e., its predic-
crease of the radial drift-wave transport. tion of the shape of the radial diffusion coefficient curve,

The authors of Refg13], [5] correctly note that this qua- 29rees quite well with numerical simulatiof3]. _
silinear treatment ok-space diffusion is of limited validity. The fate of the amplified zonal flows and the final stabi-

When the turbulence level is not very weak, new featuredization of the turbulence is much less understood. Several
become important. The rugged fluctuating botential langinterpretations have been advanced but no final conclusion

scape(as it appears in the numerical simulations of Ref) ~ S€€ms to appear yet. This matter will not be discussed in the
produces transierttapping of the particle trajectorieq its ~ Present paper. _
troughs or around its peaks, as well as formation of coherent '€ Paper is organized as follows. In Sec. II, the exact
structureg17,18. The difficult nonlinear treatment of these Starting point of the theory is defined, in the form of a Liou-
processes has been approached in various ways in the rec¥flle equation for the wave action density, i.e., the distribu-
literature. tion function of drift-wave packets or “quasiparticles.” In

In Ref. [14], the “wave kinetic equation” is treated by a Sec_. I_II, an appligation of _the methods_ of nonequil_ibriu_m
multiple-time perturbation technique which in first approxi- statlst_|cal mechgn_lcs Igads_ln full generality to a nqndn‘fuswe
mation yields the quasilinear result. In the next approxima€duation, containing in principle the non-Gaussian effects

tion, the resulting equation admits localized solutions of thgMentioned above. A “local approximation” produces a

kink-soliton type. Such coherent structures are supposed {g0S€d non-Markovian advection-diffusion equation for the

be actors in nonlocal transport schemes based on the avansemble average of the distribution function, i.e., a kinetic

lanche concept from self-organized criticality the¢gy15. ~ €duation. The latter describes tvamupled diffusive pro-
As the avalanches are random events, it appears that trarfi€SS€S In position space and in wave-vector space. General

port in such conditions is intermittent, and the heat flux mus€XPressions for the diffusion tensors are derived in terms of
be treated statistically in this framework. Its variar(esti- Lagrangian velocity correlation functions. The latter are

mated in[5]) may provide a measure of these fluctuations. evaluated in Sec. IV by applying the decorrelation trajectory

Coherent nonlinear structures that are exact solutions of 21€thod. Although their numerical evaluation is left for a

model system of one-dimensional equations for the drift-orthcoming paper, the mechanism of the trapping processes
wave—zonal flow system are very elegantly determined if?nd the generation of zonal flows are vividly apparent from
Ref.[16]. These correspond to wave trapping, which finally@" analysis of individual decorrelation trajectories, per-
produces solitons, shocks, or other similar localized strucformed in Sec. V. Section VI contains a comparison with
tures. These may be responsible for some of the nonRefs:[5], [13], and conclusions are given in Sec. VII.

Gaussian features of transport mentioned above.

. In the p_resent paper, we take a different approach to the II. THE WAVE LIOUVILLE EQUATION
interpretation of the trapping effect on the global transport.
We base our treatment on the decorrelation trajectogT) We consider a plasma in the presence of a strong mag-

method, introduced and developed in several works, startingetic field (such as a tokamakLocally this magnetic field
in 1998[19-21], and extended here in order to include thecan be considered as constant, equd.té Cartesian refer-
random walk ink space. The basic idea is to decompose theence system is then defined by three unit vecteyslirected
global ensemble of realizations of the fluctuating potentialalongB, g, in the direction of the density gradietthe tem-
into subensembles. Each of the latter comprises the set of glerature is taken constant, for simpligitynimicking the ra-
realizations having a fixed initial value of the potential anddial direction in a tokamak, ang},=e, < ,, representing the
of its first two derivatives. A particldor a wave packét poloidal direction(shearless slab geometnyif B is suffi-
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ciently strong, the collisionless motion of the particles can be dN=LyN=[H,N]. (6)

approximated by the quasi-two-dimensional motion of their

guiding centers, characterized by their position vector Equation(4) is usually called the wave kinetic equation in

=(X,y). the literature. From the viewpoint of statistical mechanics,
The plasma is assumed to be in a turbulent state produceddis is an inappropriate namgsee the next sectionlt will

by drift waves. In many interesting situations the spectrum ofather be called thevave Liouville equation

the electrostatic potential fluctuationsp, contains two

widely separated peaks, corresponding, respectively, to long- IIl. THE WAVE KINETIC EQUATION

range fluctuations and to short-range fluctuations. The fluc- o o

tuating potential can thus be represented as a sum of a long- Given the Hamiltonian structure of E¢f), it is natural to

e T treat this equation by the methods of nonequilibrium statis-
range partp and a short-range pa#i: = ¢+ ¢. These are . : . . L
most easily identified in Fourier space: tical mechanicg26] in order to derive a true wave kinetic

equation. The procedure is a generalization of the work of
_ - Ref. [27]. We note that the action density is the result of a
¢(q,t):(277)_2f dxe'9*p(x,t), pa<1, partial averagingover the small-scale fluctuations. It re-
mains, however, a fluctuating quantity in the large-scale do-
5 o main; indeed, the Hamiltonian contains the fluctuating term
¢(k,t)=(277)72J dxe**p(x,t), pk<l. (1)  k.V(xt). Hence the wave Liouville equation isstochastic
differential equationi.e., it is of the same nature asgbrid

Whenever such a significant separation exists betweekinetic equatior{28]. The associated characteristic equations
short and long scales partial averageoperation( ) can be  are therefore typical/ Langevin equations
introduced, defined as an ensemble average over small-scale The first step in the treatment of the wave Liouville equa-
quantities. Thus, in particular, tion is to separate an average part and a fluctuating part in the

distribution function:
$=(d)~. ($)-=4. (4)-=0. @ N(x,k,t)=n(x,k,t)+ SN(x,k,t),

The small-scale potential fluctuatighnever appears iso-
lated in the expressions of the macroscopic, observable quan-
tities; the interesting quantities are quadratic functionals of
the potential. Of particular importance is thetion density
N(x,k,t), which is a conserved quantity. Its definition, in the
case of drift waves, is somewhat subté4]. Calling

n(x.k,H)=(NOxKk, 1)), (SN(x.k,1))=0. (7)

Note that the average here is over the large-scale potential
fluctuations. We also decompose the wave Liouvillian opera-
tor as

d(k,t)=(1+ p2k?)$(k,t), the action density is defined as L= Lo+ 8Ly, @)
Nk = [ dpePX (b ), <l @) O
This quantity obeys an equation of evolution derived in Ly=—VI(Kk)- ' ©)
Ref.[14],
_ J — 1%
JH(x,k,t)  IN(xk,t) = R L
AN K1) = = ) = OLw V(x,t) Ix W(x,k,t) K (10
AH(x,K,t)  IN(XK,1) Here V9(k) is the (unperturbedl group velocity of the
- oK : Fva (4)  drift waves,
dwy(K)
where 9(k)=
V9(k) K
H(x,k,t)=wq(k)+k-V(x,t), (5)

_ _ | - G *kz)z{_gpgkxkyex+[1+p§(k§—k§)]ey}.
andV=(c/B) (e,XV ¢) is the long-range part of the electric Ps
drift velocity. The remarkable feature here is the Hamiltonian (12)
structure of the evolution of a set of “quasiparticles,” i.e.,
wave packets, characterized by the canonically conjugate It represents the velocity of propagation of the wave
variables(x,k) [24,25. The action density plays the role of packet, or quasiparticle, in the absence of turbulence. We
the phase-space distribution of the quasiparticles, and obegssume it to be independent xf i.e., the density gradient
the Liouville equation(4), which can be written in terms of a (henceV,) is treated locally as a constant: In E4.0) a
Liouville operatorLyy,, defined as in statistical mechanics by shorthand notation was introduced for the fluctuating “veloc-
the Poisson bracket ¢f andN: ity” of the wave vector,
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W(x,k,t)=—%[k-\7(x,t)]. (12)

Averaging the wave Liouville equatiofd) we obtain
[omitting a term{ Ly SN) in Eq. (14), which does not con-
tribute to Eq.(13)]

an— LAN=(SLwN), (13

9 ON— LN — 5Ly SN= SLyn. (14)

On the left-hand side of Eq14), we recognize a linear

PHYSICAL REVIEW E 68, 046409 (2003

We obtained anon-Markovian, nonlocal equatioaf the
same type as Eq27) of Ref.[27]. Note that, althougl$L,
(10) is a linear combination af/ 9x andéd/ 9k, Eq.(20) is not
a diffusion equationindeed, the density profile on the right-
hand side is evaluated &t|t,),k(t|t;), which are stochastic
quantities[Eq. (18)]. Hence, the facton(x(t|t;),k(t|t;),t1)
cannot be taken out of the average. This factor could possi-
bly be expanded into an infinite series of powers of
[x(t|t;)—x] and of[k(t|t;)—k], which would involve all
partial derivatives ofn(x,k,t) and very complicated aver-
ages as coefficients. This shows that E2{)) describes, in
general, a nondiffusive process. The non-Gaussian features

term describing free propagation of the drift waves in thementioned in Sec. | and in Ref$] and[16] are presumably
inhomogeneous medium, and a nonlinear term describingidden in this equation, which is an exact consequence of the
wave-wave interactions. The right-hand side is a source ternvave Liouville equation.

providing the coupling to the average equation.
The solution strategy is standard: EG4) is first solved

In order to proceed further, we assume as in R&f] that
the correlation length\, is much smaller than the macro-

by the method of characteristics, and the result is substitutegcopic gradient lengths,,,, L., both inx and ink. As we
into Eq. (13) in order to obtain a closed equation for the are dealing here with large-scale fluctuations, defined by the

average distribution function, i.e., kinetic equation The
characteristic equations of the wave Liouville equati@)
must be solved backwards in tinh27],

dx(t|t") _
T=V9(k(t|t’))+V(X(t|t’),t’), (15
dk(t|t’) —
go— = WOt ) k() t), (16)
The “initial” condition is
X(tlt)y=x, k(t|t)=k. a7

The solution of these Langevin equations in a given real-

ization is
t I
el =x- | dufveckititn) + Vo))

t —

The solution of the partial differential equatiqd4) is
then

t
5N(X,k,t): Jodtlé‘cw(x(t“l)!k(t|tl)1tl)

XN(X(t|ty),k(t|t1),t1)+ SN(x(t|0),k(t]|0),0).
(19

For simplicity we assume that at time zero the fluctuation

is zero: SN(x,k,0)= 0. Substitution into Eq(13) yields

an(x,k,t)— L9n(x,k,t)
t
= fodtl( 5£W[X,k,t] 5ﬁw(x(t|tl),k(t|tl),tl)

Xn(x(tltl)ik(t|tl)1tl)> (20)

condition (q) ps<1, this implies the assumptiops<\
<L,,L,, which is not unreasonable. This argument
allows us to eliminate the delocalization, and use the follow-
ing approximation in the integrand of EQq.(20):
n(x(t|ty),k(t|ty),t1)~n[x,k,t;], i.e., the leading term in the
expansion mentioned above. The equation thus becomes

an(x,k,t)— L9n(x,k,t)

= f;dm SLux.K,t]

X SLwX(Ht) k(t]ty) 1)) nixk,t]. (21

This is aclosed, non-Markovian equation of evolution for
the average distribution functiorsing the definition(10),
this equation is written explicitly as follows:

an(x,k, 1) +VI(k) - %n(x,k,t)

t [0 o i 9 - J
= _ XX — —+— XK — Jp—
fodtl[&x DXt —ty) o+ — DNty o

o d
. KX — . —_—
L™ (t—ty) X

LKt —t,)- %] n(x,k,ty). (22)

T
This will be called thetrue) wave kinetic equatiarit is a
non-Markovian “advection-double-diffusion” equatipmle-
scribing two coupled diffusion processes, respectively in
space and ik space, combined with propagatiGadvection
in x space. Equatiof22) contains the precise formulation of
what Diamond and his group call the “random walk kn
space.” These authors, however, consider neither the cou-
pling of this process with the diffusion ir space, nor the
non-Markovian character of these procesgasimilar equa-
tion, in the Markovian limit and without the cross-
coefficients, thus describing independent diffusiox space
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and ink space, appears in R¢fl5] for the related streamer potential landscape. It is therefore natural to study these phe-
problem) The relation between their work and ours will be nomena by using the idea of thadecorrelation trajectory

discussed at the end of this paper. (DCT), developed for “ordinary” drift-wave turbulence in
Equation(22) introduces four X2 Lagrangian correla- Ref.[19]. This method requires an extension, which will be
tion tensors, defined as follows: the subject of the present section.
Yx — — We study the stochastic motion of a drift-wave quasipar-
Lejs(t=t) = (Vi[x tIVs(x(t[ty), t1)), (23 ficle in the presence of a fluctuating electrostatic potential

XK _ _ d(x,t) defined as
Lrjs (t—t) = (Vi [ X, tIWs(x(t[t1) k(t[t1),t1)),  (24)

LR (t—t1) = (Wi [x, K, tIVe(X(t]t1) 1)), (25) X t
<I>(x,t)=s¢(X,T—), (28

LIS (t—t1) = (W, [x, K, tIWs(x(t]t1)  k(t]ty),t1)). (26)

Assuming stationary turbulence, these functions only de- - .
pend on the difference of the two times. If E82) could be wheree measures the characteristic amplitude of the poten-

set in Markovian form, it would introduce four asymptotic tial and ¢ is a dimensionless function of the space and time
diffusion tensors. defined as usual variables. The fluctuations are characterized by a correlation
length N and a correlation time 7., such that
o ® (0,009 (x,t))~0 when|x|>\ and/ort>7.. We use the
Dﬁng dt LK), ( (POOPD)=0 whenpx>) TC

0 dimensionless variablesk, 6 defined as
with similar definitions for the three other tensors. The Mar-
F;);/jan form is, however, not necessarily justified in general x=\%, k=p;lk, t=r.0. (29)

V. THE DCT METHOD FOR ZONAL FLOWS For simplicity, we will omit the overbar in the forthcom-

An essential role in the nature of strongly turbulent phe-ing equations. The Langevin equations of motion of the qua-
nomena is played by the trapping processes in the ruggesiparticle(15), (16) (in the forward time directionare

dx(6) ap(x,y,0)
W=Kdv3(k(0))—KT =Kqu3(K(8))+Ko(x(6),0), (30)
X=X(6)
dy(6) dp(X.y,0)
TR Kqug(k(6))+K — (0)E KquJ(k(0))+Ku(x(6),6), (32)
X=X
dky( ) P P(X,y,0) P P(X,y,0) B
a5 O oy RO |, SO K00 (32)
dk,(6) P P(X,y,0) PP(x,y,0)
=KKy () ————— —Kky(0)——7— =Kw,(x(0),k(8),6). (33
do X ay Y=x(8) Y Xy | o y
|
These equations will be solved with the following initial Y Y _
condition: V9=T—Kdv9, V=T—Kv, W= oo Kw. (395
Cc Cc s‘cC

x(0)=0, k(0)=K°. (34)

(It is important to take an initial wave vector of nonzero  We introduced here the two basic dimensionless param-
length: an initial|k°|=0 would remain zero for all times. eters characterizing the turbulence: thebo number Kre-
The three scaled velocitied, v, andw are defined by these lated to the intensity: of the fluctuations, and thdiamag-
equations; they are related to the corresponding dimensionaktic Kubo numberrelated to the gradient length through
guantities as follows: V.,
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7. Ce Te We define the notations for the relevant Eulerian correla-
K=t arn Ka=y Vs (36) tions,
The components of the dimensionless unperturbed group (#(0,000j(x,0))=Ey);(X)T(H),
velocity are (:(0,0)0;(x,0)) =& () TT0),
2_ 2
W= — — 2Ky g2 TR (Urs(0,0)0)(x, ) =E g (X TT ),
X (1+k+k)? Y (1+k+k9)?
(37) (#(0,00ujm(X,0)) = Ey|jm(X)TTH),
It should be noted that Eq$30)—(33) derive from the (vr(0,0Ujm(X,0)) =& im(X)T(H),
time-dependent Hamiltoniaf%),
<UI‘S(O!O)ujm(X10)>:gr5|jm(x)7( 0). (45
dx oH dk dH
d6_ ok’ de_  ax- (38) All these functions can be derived from the primary po-

tential correlation as follows:
The transport problem requires the evaluation of the four

. . J J
Lagrangian correlation§23)—(26). We concentrate here on Egx=— & Egy==2&,
the last one, which introduces all the new features; the three ay X
others are treated in a completely similar fashion. Its corre- ) )
sponding dimensionless form, for a homogeneous and sta- P _ ‘9_5 So=— ‘9_5
tionary turbulent state, is defined as xx ay2c x>

LK = ! K2LSK(t/ 39 Eqy=¢ ——25
r|s( )_m r|s( Tc)- ( ) x|y — Y|X_(9X(9y ,

Using EQq.(26), we obtain d d
Ersli =~ Gy, Eslie - Eolim™ gy Eglm

LiS(0)= f dx dk(w,(0,k°%,0)wg(x,k, )

J
Eim=7&my Eslim=27 Ers|m s 46
X 5(x—x(6))5(k—K(8))). (40 = ax; ! I g 7 (49

In order to prepare the way for the DCT method, we first Ve note the following symmetries:
note that all fluctuating quantitie@ncluding v and w) are £ =€ E=—&
derived from the potentiatp. As in all theories based on Xy ™ ylxo S dlyy:
Langevin equations, the primary Eulerian potential autocor- g g —_¢
relation has to be specifiedpriori. This quantity is assumed XXX yylyy Xxlyy yylxx xylyx vy
to be of the same form as in R¢fL9], P = ——&  =_C
yyIxy ™ ©xylyy xX|xy xy|xx:

((0,0)p(x,0))=E(X)T(0), (41) Exxtyx=Eyxir= — Eyylyx=— Eyxirx (47)

where&(x) is a dimensionless function of the position, witha  \we define some combinations of these Eulerian correla-
maximum at the origin, and(6) is a similar function of tions,

time. In the explicit calculations of the next section, we use

the following simple formgOrnstein-Uhlenbeck process Hr:kggmw, (48)
Y2+ 2 _
5(X)=exp( - 2y , T=e ", (42) Ar=KnEgjrn (49)
Br\s: kngrlsm (50
but in the remaining part of the present section, these func-
tions can remain unspecified. We introduce the maityix Cijs= kﬂé’m|5, (52
] Ars=k2KnErmisn=Agr - 52
urs(x’ 0)= aTUs(Xi 0), (43) rls mfncrm|sn s|r ( )
' It is useful to note the following identity:

such thafsee Eqs(32),(33)] 9
As=ki—C;- 53
W, (X, K, 8) = —KgUs(X, 6). (44 s Mg TN 3
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We denote by a superscript 0 the value of a quantity at theivatives (throughw) enter the theory. We therefore define
origin, thus 59_‘__:5__‘__(x=0), Al=A.(x=0k=k®), etc. the subensembl& as the set of realizations in which the

Next, we introduce potential ¢, the two components of the velocity , and the
6. 10 A0 o 2 two components of theK velocity” w, have a given value at
A :Ax|xAy\y_(Ax\y) ) (54 time O,
DO=A%—AD (A))?—AD (AD?+AY ATAD.  (55) S ¢(00)=9¢°% v,(00)=0;,
The following combinations appear in the final results: —K2u,(0,0)=w?. (57)
0_ A0 0 0 0 - . . .
Fx=AyyAx— AxyAy, Let Po(¢°% v°,w°) be the probability distribution of these
0 10 A0 A0 O initial values, assumed to be Gaussian. Then K&
Fy=AgAy — AgyAs Lagrangian correlatio40) is

JOZ AO _ AO 2 AO—AO AO AOAO,
x=[Ayy = (A)7] Yy Xy xRy Z:EXK(G):J dpdvPdwOPo( 6,0, W)
JO:[AO _(AO)Z]AO_AO AO AOAO
y xX|x X X x|y WXy
e e oo XWR(w, (X(6),K(6),0))S, (58)
LY=— A, A"+ A LA LAA,. (56)
y Xy where( )S denotes the average in the subensemble. Note the
We now develop the extension of the DCT method, fol-important fact that in the Lagrangian correlation 8

lowing the line of Ref[19]. The basic step is the decompo- (w,[0,k°,0] w,(x(8),k(8),8)), the first factor can be taken

sition of the ensemble of realizations of the turbulent en-out of the average because of E§7), hence the calculation
semble into subensembles. This decomposition is nowf this quantity is reduced to the simpler calculation of the
different from the cited one, because not only the potegtial average Lagrangian velocity. The first goal is the calculation

and its first derivativesthroughv), but also its second de- of the distribution functiorP,

Po( %V, w®) =(8(¢°— ¢(0,0)) 6%(v % —v(0,0)) 52(WS+ kU, (0,0)))

=(2w)—5f ds dydpexpisg’+igmud+ip,wd)
Xexp{_%[3250+qrqsg?\s+ pnpmkrokgggr\ms—i_zsqrg?ﬁ\r_Zspnkrogg\nr_zqrpnkgg?lns]}- (59

Note that&®=1, Sﬂs: Ors s 52,‘,=59‘n5= 0. The remaining integrations are elementary, though somewhat tedious:

0 0 0
X

1 1| A° J 2L
0,0 \,,0\ — _ = 0y2 0\2 0,2 02 y 02 0,,,0
P0(¢ VLW ) (277)5D EX[{ 2{D0(¢ ) +(Ux) +(Uy) + DOAO(WX) + DOAO(Wy) + DOAOWXWy

0 0

X 10,0 Y ,0,,,0
¢WX+ D0¢Wy

+Do

] : (60)

The average velocities in the subensemble are obtained by an extension of the method describdd 9t Ref.

(vn(X,0) 5(¢°— $(0,00)5%(v 5~ vm(0,0)) 8% (WP + k3u,5(0,0)))
PO( (ZSO’VO’WO)

=v(X)TT6). (61)

<Un(X7 9)>S:

A lengthy, but elementary calculation yields
S 1 0 0 0 0 0 0 1 00 0 0 0
Un(X):ﬁ(A g¢\n_FxCx|n_FyCy|n)¢ +5X|nvx+5y|nvy+ W(A Fx5¢|n_‘JxCx\n_L Cy\n)Wx
1 o0 0 0 0
+W(A Fy5¢|n—L Cx\n_JyCy\n)Wy- (62

The average velocity in the subensemble is obtained in the same way,

(Wn(x,k, 0))S=w5(x,K)T(6), (63)
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with

1 1
WR(X,K) = 5o (= A%An+F3An+FyAy 0) 67— Byvy = Bynvy+ Soro (— ATFRA+ J3Aqn+ LAy )W,

1
+ 5050 (— ACFYAG+HLOA,+IJA 0 wy. (64)

A strong test of these expressionsf{0)=v2, w3(0,k%=w’.
We may also calculate the average potential in the subensemble,

1 1
(6(x,0))5= (X, K)T(0) =| 5o (A°E—F3Hc—FyH,) ¢+ Eq o3+ Eyjgvy+ gogo (ATFRE— JHx—LOH Wy

1
+ —DOAO(AOF;’g— LOH,—JI9H, )wy | 7(6). 65

The remaining treatment closely follows R¢f.9]. We K
define in a given subensemb®a deterministic decorrela- Ej\n(e):j d°dvPdw®P( ¢%,v0,w°)
tion trajectory by the equations of motion,
X v{WR(x(6),kS(6), )T 6),

dxS(6) S o s
o = Kavok3(0)+Kv((0)TT0), "
Ej‘n(e)zf dp%dvPdwOPy( 4%, vO,wP)
dk3(0
d; w0,k 0)T ), XWpor(S(8), OT6),
x5(0)=0, kS(0)=K°. (66) L (0)= J d%dvOdwOPg( 4% v0,w0)
These equations determine the motion of a fictitious qua- XWIWS(S(6),kS(6), )71 6). (70)
siparticle along the deterministic DCT. We note that the
Hamiltonian structure of the starting equatid8) is inher- We stress again the great advantage of the DCT approxi-
ited by the DCT equations. Indeed, defining an averagenation: the calculation of the Lagrangian correlations is re-
Hamiltonian in the subensemble, placed by the simpler problem of the calculation of an Eule-

rian average, evaluated along the deterministic decorrelation
HS(xS kS, 8) =K qwq(kS) +KkS-v3(x®)7(6), (67) trajectory. The present problem is, however, significantly
more complicated in the present case than for the simple

it is easily checked that Eq#§66) can be written as drift-wave turbulence treated in Rdfl9]. The complication
comes from the intimate coupling of the equationsxXdf6)
dxS o9HS dkS IHS andkS(6). Any attempt to treat separately one or the other

(68)  variable would be a gross oversimplification. The Lagrangian
correlations are now fivefold integrals, which makes their
evaluation more difficult. The final result depends on more
parameters, viz., the Kubo numbgy the diamagnetic Kubo
numberK, but also the initial wave vectd®. The numeri-

cal calculation of the Lagrangian correlations and of the dif-
fusion coefficients will be the object of a forthcoming work.
Some important qualitative features can, however, be ob-

o . ) i tained from an analysis of the individual DCT trajectories.
The deterministic DCT is now introduced in the expres-

sions of the four Lagrangian correlation functia28)—(26)
[see Eq.(58)]. These quantities, evaluated in tecorrela-
tion trajectory approximationare We now consider the result of the numerical integration of
the decorrelation trajectorieg®$6). For definiteness, we as-
sume the form(41),(42) for the Eulerian potential autocorre-
lation. A specified trajectory depends on the five parameters

do -~ kS do . xS

It follows from this structure that, in the stationary case
[7(6)=1], the Hamiltonian is a constant of the motion
along the DCT,

HS(x3(6),kS(6))=HS(0,k°). (69

V. THE DECORRELATION TRAJECTORIES

Liin6)= f dp%dvOdwOPo( %, v, W) P (xS 6), O)T( 6),
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FIG. 1. Decorrelation trajectoriesy$-x5) and (kaf-kf) for FIG. 2. DCT trajectories: positior>(#) and wave vectokS(6)

K=0.5. Subensemble parametet’=2, vy=vy=0, wy=wy=1.  as functions of time, foK=0.5.
Kq=1. Initial wave vectork{=1, k)=0.

o 0.0 0 o component of the velocity® vanishes after a time that will
defining the subensembl® (4°,v",w") and on the initial pe called thetrapping time 8, of order of the correlation
value of the wave vectdk®, as well as on the two dimen- time; in the present case its value is seen tofpe 3, after
sionless Kubo numbets andK. For the purpose of illus- \hich the quasiparticle moves again uniformly, with the
tration, we choose the case of a subensemple with a relzgmup velocity. Meanwhile, the group velocity has changed
tively high value of $°=2. Although the weight of the pecause the wave vector has changed. Thus the quasiparticle
corresponding trajectories is rather small in the expression qf deflected from its unperturbed motion in tiedirection
the correlation functiongbecause of the factdP, in Egs.  and moves now in an oblique direction. We thus witness here
(70)], the qualitative features of the DCT are more clearlya refraction phenomenodue to the passage through the tur-
exhibited in this extreme case. We thus define the Suberbu|ent medium. This refraction effect is also fouma dif-
sembleS by the following values of the parametes®=2,  ferent contextin Refs.[15] and[16].
vy=vy=0, wy=wy=1. We also choose the fixed valie The wave vector starts fromk® and initially increases in
=1. The choicev’=0 implies that the(fictitious) quasipar-  both directions, the growth being largest in thé‘radial” )
ticle starts at time zero with the initial group velocity direction. Note that the increase kif is monotonous, until it
Kqv9(k®% and ends after a sufficiently long time 6,),  reaches a saturation value afier ¢,. They (“poloidal” )
whenv 3=0, wy=0, with the final group velociti jv9(k®9). componentk; quickly reaches a maximum: its monotonous
Note that, because of the factorization propertygrowth is then stopped and reversed after a certain tithe (
(v(0,0)v(x, 8))>=Vv(V(x,6))* (and similarly forw) [see Eq.  ~1). It then changes sign, and finally 6,) it reaches a
(58)], the vanishing ofvS,w® implies the vanishing of the negative saturation value. This is the manifestation of the
Lagrangian velocity correlation in the subensemBl&fhus  trapping process ink space which only affects(in the
the trapping time ¢, is the time after which the fictitious present situationthe y component. This process ends after
quasiparticle is no longer correlated along its trajectory withg~ g, after whichk® remains constantkS(6)—k” [and
its initial value. The trapping timé#,, is determined numeri- wS(6)—0]. It is important to note thatin the present cage
cally from the shape of the trajectoriésee below. It should kj|<k; (K;=1.54k7=-0.047). As a result, in the
be_clgar.thaﬁt, relates to a sirllgIeIDC‘(l\_lote t_hat a charac- asymptotic state 4> 6,), the average length scale of the
teristic time related to trapping is defined in R29] as  yrpulence in the radial direction is much smaller than in the

0 "= w0, =[q’v(q) keldv¥(k)/dk|]"% this is the bounce poloidal direction. This obviously explains the fragmentation
frequency of a drift plasmon trapped by zonal flow kp

space. It is not clear that this is the same as @udefined 01 05

above) The initial wave vector is chosen &$=1,k)=0.As P

a result, thgunperturbeglgroup velocity at the initial time is X0 Y04 N

VI(k%=(1/2) g,. Thus, in the absence of turbulenck ( % i/ R

=0), the fictitious quasiparticle moves in a straight line in 01 [V 0.3 [==s

they direction, with a group velocity that is constant because

the wave vectok remains constant. o 2 4 6,8 10 “0 2 4 6,8 10
We now consider a rather small value of the Kubo num-

ber,K=0.5. Figure 1 shows the corresponding DCT trajec- n 0.5

tories, and Fig. 2 shows the positioif(#) and the wave WSO-" \ 5 0.25

vectorkS(#) as functions of time. In Fig. 3, the correspond- *g, b \

ing graphs of the velocities®(6) in x space[together with \\ Y

the group velocitw9(#)] andw>(#6) in k space are shown. 0 -0.25
Even in this relatively weak turbulence, the picture de- .2 PR I— o5

parts radically from the unperturbed motion. The beginning o 0 2 4 6 8 10

of a trapping process irx spaceis evident: the(fictitious) ©

quasiparticle starts with the initial group velocit§(k°), but FIG. 3. Complete DCT velocitie¥S( ) = vi(k(8))+ KvS(8) in

the turbulent velocity quickly overcomes the latter and de-x space anavS(6) in k space, as functions of time, f&r=0.5. The
flects the particle from its rectilinear motion. The turbulentdashed lines represent the group veloaitykS(6)].
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FIG. 4. Decorrelation trajectoriesy$-x% and S-k3) for
K=10. Subensemble parametets’=2, vi=v9=0, wy=wy=1.
Kq=1. Initial wave vectork{=1, k)=0.

process described qualitatively in the first section, and im-

plies thegeneration of asmaltk,) zonal flow
To sum up: during the trapping tim&,, the wave vector

PHYSICAL REVIEW E 68, 046409 (2003

250
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-250
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0o 2 4 6 8 =500

0

10 6 8

0

10

changes from its initial value to a constant asymptotic value FIG. 6. Complete DCT velocitiegS(6) andwS(6) as functions

with [ky| <|ky|; the quasiparticle is trapped during that time,

of time, for K=10. The dashed lines represent the group velocity

and ends up moving with a new, deflected group velocity*k%(6)).

(refraction). In the final state, the length scale of the turbu-
lence in they (poloidal) direction is much greater than in the
X (radial) direction.

strong trapping in bottk directions In the present situation

we can no longer speak of zonal flow generati@:is now

This analySiS shows that the decorrelation process is NOWf order 1, and moreover it Surpasgé:sin absolute value.

richer than in the case studied in REE9]. In particular, the

The strong turbulence produces in this case a fragmentation

position and the wave vector move in a strictly coupled waypoth in the radial and in the poloidal directions.
and cannot be considered separately from each other. There | order to obtain a more global insight, we plotted in Fig.

is weak trapping irx space, but the trapping of thg wave-

7 the asymptotic wave-vector componenk§ (k;’) against

vector component is already quite significant at this relahe kubo numbelK for given subensemble parametgs

tively modest value of the Kubo numbeK €0.5).
We now consider a situation of strong turbulenté,

=10, with the same subensemble parameters. The DCT p@je,s.
e

sition and the wave vector of the fictitious quasiparticle ar

shown in Figs. 4 and 5, and the corresponding velocities arg.;

shown in Fig. 6.

The features which were merely sketched in the dase
=0.5 are now greatly enhanced. Tifietitious) quasiparticle
is clearlystrongly trapped irx spaceits motion is a “broken
oscillation” during the timeé,, (which has barely changed,
0y~3). During the trapping time it is more and more
strongly deflected. Its trajectory makes two turns, thus con

particular, $°=1.5). It clearly appears that true zonal flow
generation is possible only in a limited range of Kubo num-
In the present subensemble, the two crit¢kid
kil, [ky|<1 are satisfied in the range< <1.5. Beyond
s range,k;a performs an oscillationin K) and finally
settles at an absolute value larger than & has a similar
behavior, but is shifted with respect to the former. This shift
explains the smaliness of the ratjay|/[k5| for small K
(zonal flow generation

Clearly, the present discussion refers to a single suben-
semble; a more complete scanning of the parameter space is

<

fining the quasiparticle to a finite region of space. But after’€cessary for a firm general conclusion. We have considered
0y, the turbulent component of the velocity vanishes, and

the fictitious quasiparticle moves away with the final group
velocity [vf(k™)=-0.232pJ(k*)=0.115. Meanwhile,
both thek$ and thek? components of the wave vector un-
dergo a broken oscillation which stops &t 6,,, when they
reach the values( =0.879, ky=0.965. We thus witness

1.5 50
] . Tys_|
» 1 i'l : Y 25
0.5 K
¢ T R
‘\\xs K ;
0.5 ~ ¥ 25
-1
0 2 4 6 8 10 =50 2 4 6 8 10
5]

FIG. 5. DCT trajectories: positior°(6) and wave vectokS(6)
as functions of time, fokK=10.

15

10

o
\

FIG. 7. Asymptotic poloidal and radial components of the wave

vector, ko;", ky vs Kubo numberK. Subensemble parameteisc.’
=15,v7=v)=0, wy=wy=1. Kg=1. Initial wave vectork{=1,
kl=o0.

y
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other values of¢° and found very similar behavior. The
corresponding curves are dilatétbr smaller ¢°) or con-
tracted(for larger ¢°) in the K direction.

In conclusion, it clearly appears that the trapping of the

guasiparticlegi.e., of the drift wave packetgplays a major

role in their dynamics, even at relatively small levels of tur-

bulence(e.g.,K=0.5). Thus, the quasilinear approximation

is hardly valid. The trapping process will have a strong in-

do

PHYSICAL REVIEW E68, 046409 (2003
dy(6) IP[x, 0]

=K I(ke(0), k) +K ~

X=X(0)

=Kau3(ky(6),k9)+ Koy (x(6),6),

fluence on the diffusion coefficients. Their quasilinear ap-

proximation certainly gives an overestimated value.

VI. THE DIAMOND MODEL

As stated in the Introduction, Diamond and co-workers

dk(6) P Blx. 6] _ 0

de __KkyTx:x<a>=KWX(X(0)’ky'9)'
dky(6)
i —° (71)

The componenk, of the wave vector thus remains con-

[13,15 were the first authors who introduced the idea of astant. It should, however, not be put equal to zero, otherwise

“random walk ink space” for explaining the generation of
transport barriers. We now analyze the nature of their mod
and study it in light of the DCT method.

A. The Diamond D-2 model

A first approximation in Ref[5] is the neglect of the
turbulence in the motion of the quasiparticlés., in the
equations forx(6),y(6). Indeed, the only trace of the par-
ticle motion in[5] is the appearance of thgeterministig

group velocityV9 in the quasilinear propagator defining the

diffusion coefficient ink space. The resulting equations for
the DCT in this “Diamond-2 model”(which is different
from the original Diamond modglare then Eqs(66), in
which the termKvS[ x3(6)]7(6) is omitted.

the k, component would also remain constant, and there

gyvould be no “random walk ink space.” The variablek,

component appears only in the group velocity. The three
nontrivial equations remain coupled. The only turbulent ve-
locity components that remain in this case aggand u,.

The D-1 model assumes th&tw ,(x(6), #) can be neglected.
We now note that for this “one-dimensional potential”
many Eulerian correlations vanish; the only nonzero ones are
Eplyr Ealxys Eylys Eyxys Exylys @and&yyixy- The subensemble

Sis now defined by the constraints

S $(0,0=¢% vy(0,0=vy, —kjuy,(0,0=wy.

(72)

The calculations of the various DCT quantities must be

The DCT trajectories of this model were compared withredone along the same lines as in EG€)—(65). Thus, the

the ones of the “complete” mod€b6). For brevity, we shall

probability distribution of the initial values is

not, however, illustrate the results in detail. Let us just men-

tion that for weak turbulencée.g.,K=0.5) the trajectory of
k() is not very different from that of the complete model,

except that it stops at a rather different asymptotic value; as

a result, the final motion ix space is incorrectly predicted.
For strong turbulence the discrepancy is much worse.

B. The Diamond D-1 model

We discuss in some more detail a comparison with the

final model used in Ref.5]. In that paper a further simpli-
fying approximation is made, by assuming tltfa¢ potential
depends only on the x coordinate¢(x,t). This could be
called a “pseudo-one-dimensional model,” denotedOnl.

It is not truly one-dimensional because, as will be seen be-
low, the motion inx space is two-dimensional, although the

motion ink space is indeed one-dimensional.
In order to compare thB-1 model to the complete DCT

Po( %09, wy)
=(8(¢°— ¢(0,0)3(—v,(0,0) SW2+kJuy,(0,0))

1 1[AQ

= WGXP[ -3 GT(QSO)Z"'(US)Z

approximation, the latter has to be reconsidered from the
beginning, because many quantities vanish for a one-

dimensional potential. The starting Langevin equati@3—
(33) now reduce to

dx(6)
de

=Ko 3(k,( 6),k9),

102 A o
+ @(wx) + @(ﬁ W | [, (73
where
GO=A),— (A)2. (74)
The average quantities in the subensemble are
S 0 1 0 0 0 0
vy(X,ky) = 5o (AxCaly = AxCuy) &+ Eyyuy
1 0 0

+ @(Axgﬂy_ Cx|y)Wxa (75)
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FIG. 8. DCT wave vectokf(a) as a function of time, for two o ]

values ofK, for both the complete pseudo-one-dimensional model ~ FIG- 9. DCT orbits in th‘?(s'ys plane for two values oK. Solid

and theD-1 model. The two curves are exactly superposed. Subenlin€; complete one-dimensional model; dashed ID&, model.

semble parametergi®=2, v)=0, w9=1. K4=1. Initial wave vec-

tor: ky=1, k3=0-1- regular motion(with velocity v9). In particular,no trapping
effect appears in these models, even at relatively high levels

s o 1 0 o 0 0 of turbulence, where the two-dimensional DCT's show a
Wi (%, ky) = Go (— AgxAx T AdAxx) ¢~ Bypoy strong trapping effectsee Figs. 2 and)5Note that even the

“Diamond D-2 model” exhibits trapping. Thus, in the one-

1 dimensional models a very important feature of the turbu-
* @(_ASAXJFAX‘X)WS' (78 Jence is lost. Y
Next, we note that the one-dimensional models do de-
The equations of motion for the DCT are scribe the radial fragmentation process of the drift-wave
S structures by the increase kﬁ( #), but they do nogenerate
dx>(6) — K 3(kS(6) KO a zonal flow. Indeedk,(¢) remains constant in these models
dog N aOxILELEY) [see Eqgs(71), (77)]. The poloidal zonal flow is prescribed
externally in the models withp(x,#) independent ofy. It
dy( ) 9LS o S/ s 0 thus appears that a two-dimensional model is indispensable
—agg ~ Kavy(k(6),Ky)+Koy(x>(6) k) 7(0), for covering the full physics of the process.
dk3(o
5; ) _ KwS(6) KT ), VIl. CONCLUSIONS
In the present work we treated in detail the process called
dk;Q‘( 0) “random walk in wave-vector spdchy Diamond and co-
—— =0, workers[13,5]. This leads to an alternative view of the for-
do mation of transport barriers in a turbulent plasma. Rather

S mn S S mv 10 S m 10 than basing the study on a dispersion relation and the related
x(0)=y%(0)=0, KkJ(0)=ky, kj0)=ky. (77 modulational instabilityf 30], we consider a picture based on
. ) B ., the evolution of a set of drift-wave packetsquasiparti-
. The;e equations def!ne the comple_te psgudo-one-cles,,)_ The formation of zonal flows appears as a result of
dlm.enSIOSnaé DCT&, The I_DlamonD-l model is _obtamed by the fragmentation of the wave packets in the radial direction
setting vy (x(6),ky)=0 in the second equatioV7). The 54 the generation of long-wavelength structures in the po-
peculiar structure of the one-dimensional model has an intefisiq4] direction.
esting consequence. The equa_nor_lsﬁé(re)_ and fquf_( 0) The evolution of the distribution function of these packets
form a closed set. Upon substituting their solution into thejs described by a well-known Liouville equation, deriving
equation fory(¢), the latter is found by a mere quadrature. from a Hamiltonian. Assuming that the system is in a turbu-
The same remark holds for the original Langevin equationgent state, an application of the standard methods of nonequi-
(71). As a result, if one is only interested in the evolution of jprium statistical mechanicf26,27] leads, in general, to a
the wave vecto(as in Ref[5]), the neglect of the turbulence nongiffusive equation, responsible for non-Gaussian behav-
in dy%/dt has no consequence: the wave vedtiid), and or. If the spatial delocalization is neglected, a true wave
also x5(6), obtained in the complete pseudo-one-kinetic equation, i.e., a closed equation for the ensemble-
dimensional model or in thB-1 model are the same. But, of averaged part of the distribution function, is obtained. The
course, the two-dimensional spatial D@Y(6) will be dif-  new feature here is the form of this non-Markovian
ferent in the two models. This is shown in Figs. 8 and 9.  advection-diffusion equation: it describes the strongly

We first note that the wave vectbf( ) increases sharply coupled diffusive processes inspace and itk space. Gen-

and monotonously during a timé~4, after which it satu- eral expressions of the four diffusion tensors are derived in
rates at a constant asymptotic value. This meanstiles¢ is  terms of Lagrangian correlation functions of the and k)

no trappingin k in this model. As for the/S-xS DCT orbits,  velocities.
they are different in the two models, as expected. The tran- The evaluation of such Lagrangian correlations is a well-
sient effect of the turbulence is just a shift, followed by aknown stumbling block in turbulence theories. We showed
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that the quasilinear approximation is very much limited togeneration of long-wavelength zonal flows. The latter is,
very weak turbulence, because it neglects the important tragrowever, only produced in a limited range of Kubo numbers,
ping effect. The latter appears to be quite important in xoth whose extension depends on the subensemble parameters. A
andk spaces. In order to take account of this effect, we usedomparison has been made with previously used models. Of
the decorrelation trajectory approximation, which was re-course, the picture is not yet complete. These effects must be
cently developed precisely for this purpose. Its generalizagyeraged over all subensembles, i.e., over all initial condi-
tion to the present problem produces analytical expressiongons of the potential and of the velocities, in the calculation

for the Lagrangian correlations and the diffusion coefficientsof the observable diffusion coefficients. As stated above, this
The numerical evaluation of these coefficients is, howeveryj|| pe the subject of a forthcoming work.

postponed to a forthcoming paper.

The analysis of typical individual decorrelation trajecto-
ries in a given subensembland for a given form of the
Eulerian potential autocorrelatipprovides us with a vivid
illustration of the trapping processes. In particular, it explains We gratefully acknowledge very fruitful discussions with
the radial fragmentation of the wave packets, as well as th#&l. Vlad, I. Petrisor, M. Negrea, and J. Misguich.
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